What role can AI play in supporting and constraining creative coding by families? To investigate these questions, we built a Wizard of Oz platform to help families engage in creative coding in partnership with a researcher-operated AI Friend. We designed a 3 week series of programming activities with ten children, 7 to 12 years old, and nine parents. Using a creative self efficacy lens, we observe that families found it easier to generate game ideas when prompted with questions by AI Friend; parents played a unique role in guiding children in more complex programming tasks when the AI Friend failed to help, and children were more encouraged to write code for novel ideas using the AI friend help. These findings suggest that AI supported platforms should highlight unique family AI interactions focused on children's agency and creative self-efficacy.
In the current digitalization era, capturing and effectively representing knowledge is crucial in most real-world scenarios. In this context, knowledge graphs represent a potent tool for retrieving and organizing a vast amount of information in a properly interconnected and interpretable structure. However, their generation is still challenging and often requires considerable human effort and domain expertise, hampering the scalability and flexibility across different application fields. This paper proposes an innovative knowledge graph generation approach that leverages the potential of the latest generative large language models, such as GPT-3.5, that can address all the main critical issues in knowledge graph building. The approach is conveyed in a pipeline that comprises novel iterative zero-shot and external knowledge-agnostic strategies in the main stages of the generation process. Our unique manifold approach may encompass significant benefits to the scientific community. In particular, the main contribution can be summarized by: (i) an innovative strategy for iteratively prompting large language models to extract relevant components of the final graph; (ii) a zero-shot strategy for each prompt, meaning that there is no need for providing examples for "guiding" the prompt result; (iii) a scalable solution, as the adoption of LLMs avoids the need for any external resources or human expertise. To assess the effectiveness of our proposed model, we performed experiments on a dataset that covered a specific domain. We claim that our proposal is a suitable solution for scalable and versatile knowledge graph construction and may be applied to different and novel contexts.
Given a limited labeling budget, active learning (AL) aims to sample the most informative instances from an unlabeled pool to acquire labels for subsequent model training. To achieve this, AL typically measures the informativeness of unlabeled instances based on uncertainty and diversity. However, it does not consider erroneous instances with their neighborhood error density, which have great potential to improve the model performance. To address this limitation, we propose $REAL$, a novel approach to select data instances with $\underline{R}$epresentative $\underline{E}$rrors for $\underline{A}$ctive $\underline{L}$earning. It identifies minority predictions as \emph{pseudo errors} within a cluster and allocates an adaptive sampling budget for the cluster based on estimated error density. Extensive experiments on five text classification datasets demonstrate that $REAL$ consistently outperforms all best-performing baselines regarding accuracy and F1-macro scores across a wide range of hyperparameter settings. Our analysis also shows that $REAL$ selects the most representative pseudo errors that match the distribution of ground-truth errors along the decision boundary. Our code is publicly available at //github.com/withchencheng/ECML_PKDD_23_Real.
Modeling 3D avatars benefits various application scenarios such as AR/VR, gaming, and filming. Character faces contribute significant diversity and vividity as a vital component of avatars. However, building 3D character face models usually requires a heavy workload with commercial tools, even for experienced artists. Various existing sketch-based tools fail to support amateurs in modeling diverse facial shapes and rich geometric details. In this paper, we present SketchMetaFace - a sketching system targeting amateur users to model high-fidelity 3D faces in minutes. We carefully design both the user interface and the underlying algorithm. First, curvature-aware strokes are adopted to better support the controllability of carving facial details. Second, considering the key problem of mapping a 2D sketch map to a 3D model, we develop a novel learning-based method termed "Implicit and Depth Guided Mesh Modeling" (IDGMM). It fuses the advantages of mesh, implicit, and depth representations to achieve high-quality results with high efficiency. In addition, to further support usability, we present a coarse-to-fine 2D sketching interface design and a data-driven stroke suggestion tool. User studies demonstrate the superiority of our system over existing modeling tools in terms of the ease to use and visual quality of results. Experimental analyses also show that IDGMM reaches a better trade-off between accuracy and efficiency. SketchMetaFace are available at //zhongjinluo.github.io/SketchMetaFace/.
This paper is a collection of results on combinatorial properties of codes for the Z-channel. A Z-channel with error fraction $\tau$ takes as input a length-$n$ binary codeword and injects in an adversarial manner up to $n\tau$ asymmetric errors, i.e., errors that only zero out bits but do not flip $0$'s to $1$'s. It is known that the largest $(L-1)$-list-decodable code for the Z-channel with error fraction $\tau$ has exponential size (in $n$) if $\tau$ is less than a critical value that we call the $(L-1)$-list-decoding Plotkin point and has constant size if $\tau$ is larger than the threshold. The $(L-1)$-list-decoding Plotkin point is known to be $ L^{-\frac{1}{L-1}} - L^{-\frac{L}{L-1}} $, which equals $1/4$ for unique-decoding with $ L-1=1 $. In this paper, we derive various results for the size of the largest codes above and below the list-decoding Plotkin point. In particular, we show that the largest $(L-1)$-list-decodable code $\epsilon$-above the Plotkin point, {for any given sufficiently small positive constant $ \epsilon>0 $,} has size $\Theta_L(\epsilon^{-3/2})$ for any $L-1\ge1$. We also devise upper and lower bounds on the exponential size of codes below the list-decoding Plotkin point.
Graph entity dependencies (GEDs) are novel graph constraints, unifying keys and functional dependencies, for property graphs. They have been found useful in many real-world data quality and data management tasks, including fact checking on social media networks and entity resolution. In this paper, we study the discovery problem of GEDs -- finding a minimal cover of valid GEDs in a given graph data. We formalise the problem, and propose an effective and efficient approach to overcome major bottlenecks in GED discovery. In particular, we leverage existing graph partitioning algorithms to enable fast GED-scope discovery, and employ effective pruning strategies over the prohibitively large space of candidate dependencies. Furthermore, we define an interestingness measure for GEDs based on the minimum description length principle, to score and rank the mined cover set of GEDs. Finally, we demonstrate the scalability and effectiveness of our GED discovery approach through extensive experiments on real-world benchmark graph data sets; and present the usefulness of the discovered rules in different downstream data quality management applications.
Despite the advancement of machine learning techniques in recent years, state-of-the-art systems lack robustness to "real world" events, where the input distributions and tasks encountered by the deployed systems will not be limited to the original training context, and systems will instead need to adapt to novel distributions and tasks while deployed. This critical gap may be addressed through the development of "Lifelong Learning" systems that are capable of 1) Continuous Learning, 2) Transfer and Adaptation, and 3) Scalability. Unfortunately, efforts to improve these capabilities are typically treated as distinct areas of research that are assessed independently, without regard to the impact of each separate capability on other aspects of the system. We instead propose a holistic approach, using a suite of metrics and an evaluation framework to assess Lifelong Learning in a principled way that is agnostic to specific domains or system techniques. Through five case studies, we show that this suite of metrics can inform the development of varied and complex Lifelong Learning systems. We highlight how the proposed suite of metrics quantifies performance trade-offs present during Lifelong Learning system development - both the widely discussed Stability-Plasticity dilemma and the newly proposed relationship between Sample Efficient and Robust Learning. Further, we make recommendations for the formulation and use of metrics to guide the continuing development of Lifelong Learning systems and assess their progress in the future.
Machine learning is completely changing the trends in the fashion industry. From big to small every brand is using machine learning techniques in order to improve their revenue, increase customers and stay ahead of the trend. People are into fashion and they want to know what looks best and how they can improve their style and elevate their personality. Using Deep learning technology and infusing it with Computer Vision techniques one can do so by utilizing Brain-inspired Deep Networks, and engaging into Neuroaesthetics, working with GANs and Training them, playing around with Unstructured Data,and infusing the transformer architecture are just some highlights which can be touched with the Fashion domain. Its all about designing a system that can tell us information regarding the fashion aspect that can come in handy with the ever growing demand. Personalization is a big factor that impacts the spending choices of customers.The survey also shows remarkable approaches that encroach the subject of achieving that by divulging deep into how visual data can be interpreted and leveraged into different models and approaches. Aesthetics play a vital role in clothing recommendation as users' decision depends largely on whether the clothing is in line with their aesthetics, however the conventional image features cannot portray this directly. For that the survey also highlights remarkable models like tensor factorization model, conditional random field model among others to cater the need to acknowledge aesthetics as an important factor in Apparel recommendation.These AI inspired deep models can pinpoint exactly which certain style resonates best with their customers and they can have an understanding of how the new designs will set in with the community. With AI and machine learning your businesses can stay ahead of the fashion trends.
Graph Neural Networks (GNNs) have recently become increasingly popular due to their ability to learn complex systems of relations or interactions arising in a broad spectrum of problems ranging from biology and particle physics to social networks and recommendation systems. Despite the plethora of different models for deep learning on graphs, few approaches have been proposed thus far for dealing with graphs that present some sort of dynamic nature (e.g. evolving features or connectivity over time). In this paper, we present Temporal Graph Networks (TGNs), a generic, efficient framework for deep learning on dynamic graphs represented as sequences of timed events. Thanks to a novel combination of memory modules and graph-based operators, TGNs are able to significantly outperform previous approaches being at the same time more computationally efficient. We furthermore show that several previous models for learning on dynamic graphs can be cast as specific instances of our framework. We perform a detailed ablation study of different components of our framework and devise the best configuration that achieves state-of-the-art performance on several transductive and inductive prediction tasks for dynamic graphs.
Most previous event extraction studies have relied heavily on features derived from annotated event mentions, thus cannot be applied to new event types without annotation effort. In this work, we take a fresh look at event extraction and model it as a grounding problem. We design a transferable neural architecture, mapping event mentions and types jointly into a shared semantic space using structural and compositional neural networks, where the type of each event mention can be determined by the closest of all candidate types . By leveraging (1)~available manual annotations for a small set of existing event types and (2)~existing event ontologies, our framework applies to new event types without requiring additional annotation. Experiments on both existing event types (e.g., ACE, ERE) and new event types (e.g., FrameNet) demonstrate the effectiveness of our approach. \textit{Without any manual annotations} for 23 new event types, our zero-shot framework achieved performance comparable to a state-of-the-art supervised model which is trained from the annotations of 500 event mentions.