In this paper, we propose an RADI-type method for large-scale stochastic continuous-time algebraic Riccati equations with sparse and low-rank structures. The so-called ISC method is developed by using the Incorporation idea together with different Shifts to accelerate the convergence and Compressions to reduce the storage and complexity. Numerical experiments are given to show its efficiency.
In the present study, we consider the numerical method for Toeplitz-like linear systems arising from the $d$-dimensional Riesz space fractional diffusion equations (RSFDEs). We apply the Crank-Nicolson (CN) technique to discretize the temporal derivative and apply a quasi-compact finite difference method to discretize the Riesz space fractional derivatives. For the $d$-dimensional problem, the corresponding coefficient matrix is the sum of a product of a (block) tridiagonal matrix multiplying a diagonal matrix and a $d$-level Toeplitz matrix. We develop a sine transform based preconditioner to accelerate the convergence of the GMRES method. Theoretical analyses show that the upper bound of relative residual norm of the preconditioned GMRES method with the proposed preconditioner is mesh-independent, which leads to a linear convergence rate. Numerical results are presented to confirm the theoretical results regarding the preconditioned matrix and to illustrate the efficiency of the proposed preconditioner.
Iterative sketching and sketch-and-precondition are randomized algorithms used for solving overdetermined linear least-squares problems. When implemented in exact arithmetic, these algorithms produce high-accuracy solutions to least-squares problems faster than standard direct methods based on QR factorization. Recently, Meier, Nakatsukasa, Townsend, and Webb demonstrated numerical instabilities in a version of sketch-and-precondition in floating point arithmetic (arXiv:2302.07202). The work of Meier et al. raises the question: Is there a randomized least-squares solver that is both fast and stable? This paper resolves this question in the affirmative by proving that iterative sketching, appropriately implemented, is forward stable. Numerical experiments confirm the theoretical findings, demonstrating that iterative sketching is stable and faster than QR-based solvers for large problem instances.
We prove non-asymptotic error bounds for particle gradient descent (PGD)~(Kuntz et al., 2023), a recently introduced algorithm for maximum likelihood estimation of large latent variable models obtained by discretizing a gradient flow of the free energy. We begin by showing that, for models satisfying a condition generalizing both the log-Sobolev and the Polyak--{\L}ojasiewicz inequalities (LSI and P{\L}I, respectively), the flow converges exponentially fast to the set of minimizers of the free energy. We achieve this by extending a result well-known in the optimal transport literature (that the LSI implies the Talagrand inequality) and its counterpart in the optimization literature (that the P{\L}I implies the so-called quadratic growth condition), and applying it to our new setting. We also generalize the Bakry--\'Emery Theorem and show that the LSI/P{\L}I generalization holds for models with strongly concave log-likelihoods. For such models, we further control PGD's discretization error, obtaining non-asymptotic error bounds. While we are motivated by the study of PGD, we believe that the inequalities and results we extend may be of independent interest.
We present a spectral method for one-sided linear fractional integral equations on a closed interval that achieves exponentially fast convergence for a variety of equations, including ones with irrational order, multiple fractional orders, non-trivial variable coefficients, and initial-boundary conditions. The method uses an orthogonal basis that we refer to as Jacobi fractional polynomials, which are obtained from an appropriate change of variable in weighted classical Jacobi polynomials. New algorithms for building the matrices used to represent fractional integration operators are presented and compared. Even though these algorithms are unstable and require the use of high-precision computations, the spectral method nonetheless yields well-conditioned linear systems and is therefore stable and efficient. For time-fractional heat and wave equations, we show that our method (which is not sparse but uses an orthogonal basis) outperforms a sparse spectral method (which uses a basis that is not orthogonal) due to its superior stability.
This paper presents an effective low-rank generalized alternating direction implicit iteration (R-GADI) method for solving large-scale sparse and stable Lyapunov matrix equations and continuous-time algebraic Riccati matrix equations. The method is based on generalized alternating direction implicit iteration (GADI), which exploits the low-rank property of matrices and utilizes the Cholesky factorization approach for solving. The advantage of the new algorithm lies in its direct and efficient low-rank formulation, which is a variant of the Cholesky decomposition in the Lyapunov GADI method, saving storage space and making it computationally effective. When solving the continuous-time algebraic Riccati matrix equation, the Riccati equation is first simplified to a Lyapunov equation using the Newton method, and then the R-GADI method is employed for computation. Additionally, we analyze the convergence of the R-GADI method and prove its consistency with the convergence of the GADI method. Finally, the effectiveness of the new algorithm is demonstrated through corresponding numerical experiments.
In this paper, we focus on using optimization methods to solve matrix equations by transforming the problem of solving the Sylvester matrix equation or continuous algebraic Riccati equation into an optimization problem. Initially, we use a constrained convex optimization method (CCOM) to solve the Sylvester matrix equation with $\ell_{2,1}$-norm, where we provide a convergence analysis and numerical examples of CCOM; however, the results show that the algorithm is not efficient. To address this issue, we employ classical quasi-Newton methods such as DFP and BFGS algorithms to solve the Sylvester matrix equation and present the convergence and numerical results of the algorithm. Additionally, we compare these algorithms with the CG algorithm and AR algorithm, and our results demonstrate that the presented algorithms are effective. Furthermore, we propose a unified framework of the alternating direction multiplier method (ADMM) for directly solving the continuous algebraic Riccati equation (CARE), and we provide the convergence and numerical results of ADMM. Our experimental results indicate that ADMM is an effective optimization algorithm for solving CARE. Finally, to improve the effectiveness of the optimization method for solving Riccati equation, we propose the Newton-ADMM algorithm framework, where the outer iteration of this method is the classical Newton method, and the inner iteration involves using ADMM to solve Lyapunov matrix equations inexactly. We also provide the convergence and numerical results of this algorithm, which our results demonstrate are more efficient than ADMM for solving CARE.
The article mainly introduces preprocessing algorithms for solving linear equation systems. This algorithm uses three algorithms as inner iterations, namely RPCG algorithm, ADI algorithm, and Kaczmarz algorithm. Then, it uses BA-GMRES as an outer iteration to solve the linear equation system. These three algorithms can indirectly generate preprocessing matrices, which are used for solving equation systems. In addition, we provide corresponding convergence analysis and numerical examples. Through numerical examples, we demonstrate the effectiveness and feasibility of these preprocessing methods. Furthermore, in the Kaczmarz algorithm, we introduce both constant step size and adaptive step size, and extend the parameter range of the Kaczmarz algorithm to $\alpha\in(0,\infty)$. We also study the solution rate of linear equation systems using different step sizes. Numerical examples show that both constant step size and adaptive step size have higher solution efficiency than the solving algorithm without preprocessing.
In this work we consider the Allen--Cahn equation, a prototypical model problem in nonlinear dynamics that exhibits bifurcations corresponding to variations of a deterministic bifurcation parameter. Going beyond the state-of-the-art, we introduce a random coefficient function in the linear reaction part of the equation, thereby accounting for random, spatially-heterogeneous effects. Importantly, we assume a spatially constant, deterministic mean value of the random coefficient. We show that this mean value is in fact a bifurcation parameter in the Allen--Cahn equation with random coefficients. Moreover, we show that the bifurcation points and bifurcation curves become random objects. We consider two distinct modelling situations: (i) for a spatially homogeneous coefficient we derive analytical expressions for the distribution of the bifurcation points and show that the bifurcation curves are random shifts of a fixed reference curve; (ii) for a spatially heterogeneous coefficient we employ a generalized polynomial chaos expansion to approximate the statistical properties of the random bifurcation points and bifurcation curves. We present numerical examples in 1D physical space, where we combine the popular software package Continuation Core and Toolboxes (CoCo) for numerical continuation and the Sparse Grids Matlab Kit for the polynomial chaos expansion. Our exposition addresses both, dynamical systems and uncertainty quantification, highlighting how analytical and numerical tools from both areas can be combined efficiently for the challenging uncertainty quantification analysis of bifurcations in random differential equations.
We extend three related results from the analysis of influences of Boolean functions to the quantum setting, namely the KKL Theorem, Friedgut's Junta Theorem and Talagrand's variance inequality for geometric influences. Our results are derived by a joint use of recently studied hypercontractivity and gradient estimates. These generic tools also allow us to derive generalizations of these results in a general von Neumann algebraic setting beyond the case of the quantum hypercube, including examples in infinite dimensions relevant to quantum information theory such as continuous variables quantum systems. Finally, we comment on the implications of our results as regards to noncommutative extensions of isoperimetric type inequalities, quantum circuit complexity lower bounds and the learnability of quantum observables.
We propose a monotone approximation scheme for a class of fully nonlinear PDEs called G-equations. Such equations arise often in the characterization of G-distributed random variables in a sublinear expectation space. The proposed scheme is constructed recursively based on a piecewise constant approximation of the viscosity solution to the G-equation. We establish the convergence of the scheme and determine the convergence rate with an explicit error bound, using the comparison principles for both the scheme and the equation together with a mollification procedure. The first application is obtaining the convergence rate of Peng's robust central limit theorem with an explicit bound of Berry-Esseen type. The second application is an approximation scheme with its convergence rate for the Black-Scholes-Barenblatt equation.