The IoT's vulnerability to network attacks has motivated the design of intrusion detection schemes (IDS) using Machine Learning (ML), with a low computational cost for online detection but intensive offline learning. Such IDS can have high attack detection accuracy and are easily installed on servers that communicate with IoT devices. However, they are seldom evaluated in realistic operational conditions where IDS processing may be held up by the system overload created by attacks. Thus we first present an experimental study of UDP Flood Attacks on a Local Area Network Test-Bed, where the first line of defence is an accurate IDS using an Auto-Associative Dense Random Neural Network. The experiments reveal that during severe attacks, the packet and protocol management software overloads the multi-core server, and paralyses IDS detection. We therefore propose and experimentally evaluate an IDS design where decisions are made from a very small number of incoming packets, so that attacking traffic is dropped within milli-seconds after an attack begins and the paralysing effect of congestion is avoided.
We present a new 3D point-based detector model, named Shift-SSD, for precise 3D object detection in autonomous driving. Traditional point-based 3D object detectors often employ architectures that rely on a progressive downsampling of points. While this method effectively reduces computational demands and increases receptive fields, it will compromise the preservation of crucial non-local information for accurate 3D object detection, especially in the complex driving scenarios. To address this, we introduce an intriguing Cross-Cluster Shifting operation to unleash the representation capacity of the point-based detector by efficiently modeling longer-range inter-dependency while including only a negligible overhead. Concretely, the Cross-Cluster Shifting operation enhances the conventional design by shifting partial channels from neighboring clusters, which enables richer interaction with non-local regions and thus enlarges the receptive field of clusters. We conduct extensive experiments on the KITTI, Waymo, and nuScenes datasets, and the results demonstrate the state-of-the-art performance of Shift-SSD in both detection accuracy and runtime efficiency.
In the rapidly evolving landscape of AI-mediated communication (AIMC), tools powered by Large Language Models (LLMs) are becoming integral to interpersonal communication. Employing a mixed-methods approach, we conducted a one-week diary and interview study to explore users' perceptions of these tools' ability to: 1) support interpersonal communication in the short-term, and 2) lead to potential long-term effects. Our findings indicate that participants view AIMC support favorably, citing benefits such as increased communication confidence, and finding precise language to express their thoughts, navigating linguistic and cultural barriers. However, the study also uncovers current limitations of AIMC tools, including verbosity, unnatural responses, and excessive emotional intensity. These shortcomings are further exacerbated by user concerns about inauthenticity and potential overreliance on the technology. Furthermore, we identified four key communication spaces delineated by communication stakes (high or low) and relationship dynamics (formal or informal) that differentially predict users' attitudes toward AIMC tools. Specifically, participants found the tool is more suitable for communicating in formal relationships than informal ones and more beneficial in high-stakes than low-stakes communication.
Quantum Annealing (QA)-accelerated MIMO detection is an emerging research approach in the context of NextG wireless networks. The opportunity is to enable large MIMO systems and thus improve wireless performance. The approach aims to leverage QA to expedite the computation required for theoretically optimal but computationally-demanding Maximum Likelihood detection to overcome the limitations of the currently deployed linear detectors. This paper presents X-ResQ, a QA-based MIMO detector system featuring fine-grained quantum task parallelism that is uniquely enabled by the Reverse Annealing (RA) protocol. Unlike prior designs, X-ResQ has many desirable system properties for a parallel QA detector and has effectively improved detection performance as more qubits are assigned. In our evaluations on a state-of-the-art quantum annealer, fully parallel X-ResQ achieves near-optimal throughput (over 10 bits/s/Hz) for $4\times6$ MIMO with 16-QAM using six levels of parallelism with 240 qubits and $220~\mu$s QA compute time, achieving 2.5--5$\times$ gains compared against other tested detectors. For more comprehensive evaluations, we implement and evaluate X-ResQ in the non-quantum digital setting. This non-quantum X-ResQ demonstration showcases the potential to realize ultra-large $1024\times1024$ MIMO, significantly outperforming other MIMO detectors, including the state-of-the-art RA detector classically implemented in the same way.
Hyper-redundant Robotic Manipulators (HRMs) offer great dexterity and flexibility of operation, but solving Inverse Kinematics (IK) is challenging. In this work, we introduce VO-FABRIK, an algorithm combining Forward and Backward Reaching Inverse Kinematics (FABRIK) for repeatable deterministic IK computation, and an approach inspired from velocity obstacles to perform path planning under collision and joint limits constraints. We show preliminary results on an industrial HRM with 19 actuated joints. Our algorithm achieves good performance where a state-of-the-art IK solver fails.
We prove a priori and a posteriori error estimates for physics-informed neural networks (PINNs) for linear PDEs. We analyze elliptic equations in primal and mixed form, elasticity, parabolic, hyperbolic and Stokes equations; and a PDE constrained optimization problem. For the analysis, we propose an abstract framework in the common language of bilinear forms, and we show that coercivity and continuity lead to error estimates. The obtained estimates are sharp and reveal that the $L^2$ penalty approach for initial and boundary conditions in the PINN formulation weakens the norm of the error decay. Finally, utilizing recent advances in PINN optimization, we present numerical examples that illustrate the ability of the method to achieve accurate solutions.
We introduce Syntax-Aware Fill-In-the-Middle (SAFIM), a new benchmark for evaluating Large Language Models (LLMs) on the code Fill-in-the-Middle (FIM) task. This benchmark focuses on syntax-aware completions of program structures such as code blocks and conditional expressions, and includes 17,720 examples from multiple programming languages, sourced from recent code submissions after April 2022 to minimize data contamination. SAFIM provides a robust framework with various prompt designs and novel syntax-aware post-processing techniques, facilitating accurate and fair comparisons across LLMs. Our comprehensive evaluation of 15 LLMs shows that FIM pretraining not only enhances FIM proficiency but also improves Left-to-Right (L2R) inference using LLMs. Our findings challenge conventional beliefs and suggest that pretraining methods and data quality have more impact than model size. SAFIM thus serves as a foundational platform for future research in effective pretraining strategies for code LLMs. The evaluation toolkit and dataset are available at //github.com/gonglinyuan/safim, and the leaderboard is available at //safimbenchmark.com.
Investigating the increasingly popular domain of short video consumption, this study focuses on the impact of Opinion Polarization (OP), a significant factor in the digital landscape influencing public opinions and social interactions. We analyze OP's effect on viewers' perceptions and behaviors, finding that traditional feedback metrics like likes and watch time fail to fully capture and measure OP. Addressing this gap, our research utilizes Electroencephalogram (EEG) signals to introduce a novel, non-invasive approach for evaluating neural responses to OP, affecting perception and cognition. Empirical analysis reveals OP's considerable impact on viewers' emotions, evidenced by changes in brain activity. Our findings also highlight the potential of EEG data in predicting exposure to polarized short video content, offering a new perspective on the dynamics of short video consumption and a unique method for quantifying OP's effects.
Silent Speech Interfaces (SSIs) offer a noninvasive alternative to brain-computer interfaces for soundless verbal communication. We introduce Multimodal Orofacial Neural Audio (MONA), a system that leverages cross-modal alignment through novel loss functions--cross-contrast (crossCon) and supervised temporal contrast (supTcon)--to train a multimodal model with a shared latent representation. This architecture enables the use of audio-only datasets like LibriSpeech to improve silent speech recognition. Additionally, our introduction of Large Language Model (LLM) Integrated Scoring Adjustment (LISA) significantly improves recognition accuracy. Together, MONA LISA reduces the state-of-the-art word error rate (WER) from 28.8% to 12.2% in the Gaddy (2020) benchmark dataset for silent speech on an open vocabulary. For vocal EMG recordings, our method improves the state-of-the-art from 23.3% to 3.7% WER. In the Brain-to-Text 2024 competition, LISA performs best, improving the top WER from 9.8% to 8.9%. To the best of our knowledge, this work represents the first instance where noninvasive silent speech recognition on an open vocabulary has cleared the threshold of 15% WER, demonstrating that SSIs can be a viable alternative to automatic speech recognition (ASR). Our work not only narrows the performance gap between silent and vocalized speech but also opens new possibilities in human-computer interaction, demonstrating the potential of cross-modal approaches in noisy and data-limited regimes.
Graph Neural Networks (GNNs) have gained momentum in graph representation learning and boosted the state of the art in a variety of areas, such as data mining (\emph{e.g.,} social network analysis and recommender systems), computer vision (\emph{e.g.,} object detection and point cloud learning), and natural language processing (\emph{e.g.,} relation extraction and sequence learning), to name a few. With the emergence of Transformers in natural language processing and computer vision, graph Transformers embed a graph structure into the Transformer architecture to overcome the limitations of local neighborhood aggregation while avoiding strict structural inductive biases. In this paper, we present a comprehensive review of GNNs and graph Transformers in computer vision from a task-oriented perspective. Specifically, we divide their applications in computer vision into five categories according to the modality of input data, \emph{i.e.,} 2D natural images, videos, 3D data, vision + language, and medical images. In each category, we further divide the applications according to a set of vision tasks. Such a task-oriented taxonomy allows us to examine how each task is tackled by different GNN-based approaches and how well these approaches perform. Based on the necessary preliminaries, we provide the definitions and challenges of the tasks, in-depth coverage of the representative approaches, as well as discussions regarding insights, limitations, and future directions.
Deep neural networks (DNNs) are successful in many computer vision tasks. However, the most accurate DNNs require millions of parameters and operations, making them energy, computation and memory intensive. This impedes the deployment of large DNNs in low-power devices with limited compute resources. Recent research improves DNN models by reducing the memory requirement, energy consumption, and number of operations without significantly decreasing the accuracy. This paper surveys the progress of low-power deep learning and computer vision, specifically in regards to inference, and discusses the methods for compacting and accelerating DNN models. The techniques can be divided into four major categories: (1) parameter quantization and pruning, (2) compressed convolutional filters and matrix factorization, (3) network architecture search, and (4) knowledge distillation. We analyze the accuracy, advantages, disadvantages, and potential solutions to the problems with the techniques in each category. We also discuss new evaluation metrics as a guideline for future research.