亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Enhancing performance while reducing costs is the fundamental design philosophy of integrated circuits (ICs). With advancements in packaging technology, interposer-based chiplet architecture has emerged as a promising solution. Chiplet integration, often referred to as 2.5D IC, offers significant benefits, including cost-effectiveness, reusability, and improved performance. However, realizing these advantages heavily relies on effective electronic design automation (EDA) processes. EDA plays a crucial role in optimizing architecture design, partitioning, combination, physical design, reliability analysis, etc. Currently, optimizing the automation methodologies for chiplet architecture is a popular focus; therefore, we propose a survey to summarize current methods and discuss future directions. This paper will review the research literature on design automation methods for chiplet-based architectures, highlighting current challenges and exploring opportunities in 2.5D IC from an EDA perspective. We expect this survey will provide valuable insights for the future development of EDA tools for chiplet-based integrated architectures.

相關內容

電(dian)子設(she)(she)計(ji)自動化(hua)(英(ying)語:Electronic design automation,縮寫:EDA)是指利用(yong)計(ji)算機輔助設(she)(she)計(ji)(CAD)軟件,來(lai)完成(cheng)超大規模集成(cheng)電(dian)路(VLSI)芯(xin)片的(de)功(gong)能(neng)設(she)(she)計(ji)、綜合、驗證、物理設(she)(she)計(ji)(包括布(bu)(bu)局、布(bu)(bu)線、版圖、設(she)(she)計(ji)規則檢查等)等流程的(de)設(she)(she)計(ji)方式。

While visual question-answering (VQA) benchmarks have catalyzed the development of reasoning techniques, they have focused on vertical thinking. Effective problem-solving also necessitates lateral thinking, which remains understudied in AI and has not been used to test visual perception systems. To bridge this gap, we formulate visual lateral thinking as a multiple-choice question-answering task and describe a three-step taxonomy-driven methodology for instantiating task examples. Then, we develop COLUMBUS, a synthetic benchmark that applies the task pipeline to create QA sets with text and icon rebus puzzles based on publicly available collections of compounds and common phrases. COLUMBUS comprises over 1,000 puzzles, each with four answer candidates. While the SotA vision-language models (VLMs) achieve decent performance, our evaluation demonstrates a substantial gap between humans and models. VLMs benefit from human-curated descriptions but struggle to self-generate such representations at the right level of abstraction.

Graph neural networks (GNNs) provide important prospective insights in applications such as social behavior analysis and financial risk analysis based on their powerful learning capabilities on graph data. Nevertheless, GNNs' predictive performance relies on the quality of task-specific node labels, so it is common practice to improve the model's generalization ability in the downstream execution of decision-making tasks through pre-training. Graph prompting is a prudent choice but risky without taking measures to prevent data leakage. In other words, in high-risk decision scenarios, prompt learning can infer private information by accessing model parameters trained on private data (publishing model parameters in pre-training, i.e., without directly leaking the raw data, is a tacitly accepted trend). However, myriad graph inference attacks necessitate tailored module design and processing to enhance inference capabilities due to variations in supervision signals. In this paper, we propose a novel Prompt-based unifying Inference Attack framework on GNNs, named ProIA. Specifically, ProIA retains the crucial topological information of the graph during pre-training, enhancing the background knowledge of the inference attack model. It then utilizes a unified prompt and introduces additional disentanglement factors in downstream attacks to adapt to task-relevant knowledge. Finally, extensive experiments show that ProIA enhances attack capabilities and demonstrates remarkable adaptability to various inference attacks.

Gender diversity enhances research by bringing diverse perspectives and innovative approaches. It ensures equitable solutions that address the needs of diverse populations. However, gender disparity persists in research where women remain underrepresented, which might limit diversity and innovation. Many even leave scientific careers as their contributions often go unnoticed and undervalued. Therefore, understanding gender-based contributions and collaboration dynamics is crucial to addressing this gap and creating a more inclusive research environment. In this study, we analyzed 2,000 articles published over the past decade in the Journal of Systems and Software (JSS). From these, we selected 384 articles that detailed authors' contributions and contained both female and male authors to investigate gender-based contributions. Our contributions are fourfold. First, we analyzed women's engagement in software systems research. Our analysis showed that only 32.74% of the total authors are women and female-led or supervised studies were fewer than those of men. Second, we investigated female authors' contributions across 14 major roles. Interestingly, we found that women contributed comparably to men in most roles, with more contributions in conceptualization, writing, and reviewing articles. Third, we explored the areas of software systems research and found that female authors are more actively involved in human-centric research domains. Finally, we analyzed gender-based collaboration dynamics. Our findings revealed that female supervisors tended to collaborate locally more often than national-level collaborations. Our study highlights that females' contributions to software systems research are comparable to those of men. Therefore, the barriers need to be addressed to enhance female participation and ensure equity and inclusivity in research.

The automatic estimation of pain is essential in designing an optimal pain management system offering reliable assessment and reducing the suffering of patients. In this study, we present a novel full transformer-based framework consisting of a Transformer in Transformer (TNT) model and a Transformer leveraging cross-attention and self-attention blocks. Elaborating on videos from the BioVid database, we demonstrate state-of-the-art performances, showing the efficacy, efficiency, and generalization capability across all the primary pain estimation tasks.

The beamforming optimization in continuous aperture array (CAPA)-based multi-user communications is studied. In contrast to conventional spatially discrete antenna arrays, CAPAs can exploit the full spatial degrees of freedom (DoFs) by emitting information-bearing electromagnetic (EM) waves through continuous source current distributed across the aperture. Nevertheless, such an operation renders the beamforming optimization problem as a non-convex integral-based functional programming problem, which is challenging for conventional discrete optimization methods. A couple of low-complexity approaches are proposed to solve the functional programming problem. 1) Calculus of variations (CoV)-based approach: Closed-form structure of the optimal continuous source patterns are derived based on CoV, inspiring a low-complexity integral-free iterative algorithm for solving the functional programming problem. 2) Correlation-based zero-forcing (Corr-ZF) approach: Closed-form ZF source current patterns that completely eliminate the inter-user interference are derived based on the channel correlations. By using these patterns, the original functional programming problem is transformed to a simple power allocation problem, which can be solved using the classical water-filling approach with reduced complexity. Our numerical results validate the effectiveness of the proposed designs and reveal that: i) compared to the state-of-the-art Fourier-based discretization approach, the proposed CoV-based approach not only improves communication performance but also reduces computational complexity by up to hundreds of times for large CAPA apertures and high frequencies, and ii) the proposed Corr-ZF approach achieves asymptotically optimal performance compared to the CoV-based approach.

Photometric constraint is indispensable for self-supervised monocular depth estimation. It involves warping a source image onto a target view using estimated depth&pose, and then minimizing the difference between the warped and target images. However, the endoscopic built-in light causes significant brightness fluctuations, and thus makes the photometric constraint unreliable. Previous efforts only mitigate this relying on extra models to calibrate image brightness. In this paper, we propose MonoPCC to address the brightness inconsistency radically by reshaping the photometric constraint into a cycle form. Instead of only warping the source image, MonoPCC constructs a closed loop consisting of two opposite forward-backward warping paths: from target to source and then back to target. Thus, the target image finally receives an image cycle-warped from itself, which naturally makes the constraint invariant to brightness changes. Moreover, MonoPCC transplants the source image's phase-frequency into the intermediate warped image to avoid structure lost, and also stabilizes the training via an exponential moving average (EMA) strategy to avoid frequent changes in the forward warping. The comprehensive and extensive experimental results on four endoscopic datasets demonstrate that our proposed MonoPCC shows a great robustness to the brightness inconsistency, and exceeds other state-of-the-arts by reducing the absolute relative error by at least 7.27%, 9.38%, 9.90% and 3.17%, respectively.

Robotic hands offer advanced manipulation capabilities, while their complexity and cost often limit their real-world applications. In contrast, simple parallel grippers, though affordable, are restricted to basic tasks like pick-and-place. Recently, a vibration-based mechanism was proposed to augment parallel grippers and enable in-hand manipulation capabilities for thin objects. By utilizing the stick-slip phenomenon, a simple controller was able to drive a grasped object to a desired position. However, due to the underactuated nature of the mechanism, direct control of the object's orientation was not possible. In this letter, we address the challenge of manipulating the entire state of the object. Hence, we present the excitation of a cyclic phenomenon where the object's center-of-mass rotates in a constant radius about the grasping point. With this cyclic motion, we propose an algorithm for manipulating the object to desired states. In addition to a full analytical analysis of the cyclic phenomenon, we propose the use of duty cycle modulation in operating the vibration actuator to provide more accurate manipulation. Finite element analysis, experiments and task demonstrations validate the proposed algorithm.

Multilingual large language models (LLMs) today may not necessarily provide culturally appropriate and relevant responses to its Filipino users. We introduce Kalahi, a cultural LLM evaluation suite collaboratively created by native Filipino speakers. It is composed of 150 high-quality, handcrafted and nuanced prompts that test LLMs for generations that are relevant to shared Filipino cultural knowledge and values. Strong LLM performance in Kalahi indicates a model's ability to generate responses similar to what an average Filipino would say or do in a given situation. We conducted experiments on LLMs with multilingual and Filipino language support. Results show that Kalahi, while trivial for Filipinos, is challenging for LLMs, with the best model answering only 46.0% of the questions correctly compared to native Filipino performance of 89.10%. Thus, Kalahi can be used to accurately and reliably evaluate Filipino cultural representation in LLMs.

The Granger framework is useful for discovering causal relations in time-varying signals. However, most Granger causality (GC) methods are developed for densely sampled timeseries data. A substantially different setting, particularly common in medical imaging, is the longitudinal study design, where multiple subjects are followed and sparsely observed over time. Longitudinal studies commonly track several biomarkers, which are likely governed by nonlinear dynamics that might have subject-specific idiosyncrasies and exhibit both direct and indirect causes. Furthermore, real-world longitudinal data often suffer from widespread missingness. GC methods are not well-suited to handle these issues. In this paper, we propose an approach named GLACIAL (Granger and LeArning-based CausalIty Analysis for Longitudinal studies) to fill this methodological gap by marrying GC with a multi-task neural forecasting model. GLACIAL treats subjects as independent samples and uses the model's average prediction accuracy on hold-out subjects to probe causal links. Input dropout and model interpolation are used to efficiently learn nonlinear dynamic relationships between a large number of variables and to handle missing values respectively. Extensive simulations and experiments on a real longitudinal medical imaging dataset show GLACIAL beating competitive baselines and confirm its utility. Our code is available at //github.com/mnhng/GLACIAL.

The recent proliferation of knowledge graphs (KGs) coupled with incomplete or partial information, in the form of missing relations (links) between entities, has fueled a lot of research on knowledge base completion (also known as relation prediction). Several recent works suggest that convolutional neural network (CNN) based models generate richer and more expressive feature embeddings and hence also perform well on relation prediction. However, we observe that these KG embeddings treat triples independently and thus fail to cover the complex and hidden information that is inherently implicit in the local neighborhood surrounding a triple. To this effect, our paper proposes a novel attention based feature embedding that captures both entity and relation features in any given entity's neighborhood. Additionally, we also encapsulate relation clusters and multihop relations in our model. Our empirical study offers insights into the efficacy of our attention based model and we show marked performance gains in comparison to state of the art methods on all datasets.

北京阿比特科技有限公司