亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Autoregressive models based on Transformers have become the prevailing approach for generating music compositions that exhibit comprehensive musical structure. These models are typically trained by minimizing the negative log-likelihood (NLL) of the observed sequence in an autoregressive manner. However, when generating long sequences, the quality of samples from these models tends to significantly deteriorate due to exposure bias. To address this issue, we leverage classifiers trained to differentiate between real and sampled sequences to identify these failures. This observation motivates our exploration of adversarial losses as a complement to the NLL objective. We employ a pre-trained Span-BERT model as the discriminator in the Generative Adversarial Network (GAN) framework, which enhances training stability in our experiments. To optimize discrete sequences within the GAN framework, we utilize the Gumbel-Softmax trick to obtain a differentiable approximation of the sampling process. Additionally, we partition the sequences into smaller chunks to ensure that memory constraints are met. Through human evaluations and the introduction of a novel discriminative metric, we demonstrate that our approach outperforms a baseline model trained solely on likelihood maximization.

相關內容

ACM/IEEE第23屆模型驅動工程語言和系統國際會議,是模型驅動軟件和系統工程的首要會議系列,由ACM-SIGSOFT和IEEE-TCSE支持組織。自1998年以來,模型涵蓋了建模的各個方面,從語言和方法到工具和應用程序。模特的參加者來自不同的背景,包括研究人員、學者、工程師和工業專業人士。MODELS 2019是一個論壇,參與者可以圍繞建模和模型驅動的軟件和系統交流前沿研究成果和創新實踐經驗。今年的版本將為建模社區提供進一步推進建模基礎的機會,并在網絡物理系統、嵌入式系統、社會技術系統、云計算、大數據、機器學習、安全、開源等新興領域提出建模的創新應用以及可持續性。 官網鏈接: · Machine Translation · 可辨認的 · 原點 · BLEURT ·
2023 年 11 月 1 日

We investigate MT evaluation metric performance on adversarially-synthesized texts, to shed light on metric robustness. We experiment with word- and character-level attacks on three popular machine translation metrics: BERTScore, BLEURT, and COMET. Our human experiments validate that automatic metrics tend to overpenalize adversarially-degraded translations. We also identify inconsistencies in BERTScore ratings, where it judges the original sentence and the adversarially-degraded one as similar, while judging the degraded translation as notably worse than the original with respect to the reference. We identify patterns of brittleness that motivate more robust metric development.

Grade of Membership (GoM) models are popular individual-level mixture models for multivariate categorical data. GoM allows each subject to have mixed memberships in multiple extreme latent profiles. Therefore GoM models have a richer modeling capacity than latent class models that restrict each subject to belong to a single profile. The flexibility of GoM comes at the cost of more challenging identifiability and estimation problems. In this work, we propose a singular value decomposition (SVD) based spectral approach to GoM analysis with multivariate binary responses. Our approach hinges on the observation that the expectation of the data matrix has a low-rank decomposition under a GoM model. For identifiability, we develop sufficient and almost necessary conditions for a notion of expectation identifiability. For estimation, we extract only a few leading singular vectors of the observed data matrix, and exploit the simplex geometry of these vectors to estimate the mixed membership scores and other parameters. We also establish the consistency of our estimator in the double-asymptotic regime where both the number of subjects and the number of items grow to infinity. Our spectral method has a huge computational advantage over Bayesian or likelihood-based methods and is scalable to large-scale and high-dimensional data. Extensive simulation studies demonstrate the superior efficiency and accuracy of our method. We also illustrate our method by applying it to a personality test dataset.

Audio fingerprinting is a well-established solution for song identification from short recording excerpts. Popular methods rely on the extraction of sparse representations, generally spectral peaks, and have proven to be accurate, fast, and scalable to large collections. However, real-world applications of audio identification often happen in noisy environments, which can cause these systems to fail. In this work, we tackle this problem by introducing and releasing a new audio augmentation pipeline that adds noise to music snippets in a realistic way, by stochastically mimicking real-world scenarios. We then propose and release a deep learning model that removes noisy components from spectrograms in order to improve peak-based fingerprinting systems' accuracy. We show that the addition of our model improves the identification performance of commonly used audio fingerprinting systems, even under noisy conditions.

In the current golden age of multimedia, human visualization is no longer the single main target, with the final consumer often being a machine which performs some processing or computer vision tasks. In both cases, deep learning plays a undamental role in extracting features from the multimedia representation data, usually producing a compressed representation referred to as latent representation. The increasing development and adoption of deep learning-based solutions in a wide area of multimedia applications have opened an exciting new vision where a common compressed multimedia representation is used for both man and machine. The main benefits of this vision are two-fold: i) improved performance for the computer vision tasks, since the effects of coding artifacts are mitigated; and ii) reduced computational complexity, since prior decoding is not required. This paper proposes the first taxonomy for designing compressed domain computer vision solutions driven by the architecture and weights compatibility with an available spatio-temporal computer vision processor. The potential of the proposed taxonomy is demonstrated for the specific case of point cloud classification by designing novel compressed domain processors using the JPEG Pleno Point Cloud Coding standard under development and adaptations of the PointGrid classifier. Experimental results show that the designed compressed domain point cloud classification solutions can significantly outperform the spatial-temporal domain classification benchmarks when applied to the decompressed data, containing coding artifacts, and even surpass their performance when applied to the original uncompressed data.

Multi-choice Machine Reading Comprehension (MRC) is a major and challenging task for machines to answer questions according to provided options. Answers in multi-choice MRC cannot be directly extracted in the given passages, and essentially require machines capable of reasoning from accurate extracted evidence. However, the critical evidence may be as simple as just one word or phrase, while it is hidden in the given redundant, noisy passage with multiple linguistic hierarchies from phrase, fragment, sentence until the entire passage. We thus propose a novel general-purpose model enhancement which integrates multi-grained evidence comprehensively, named Multi-grained evidence inferencer (Mugen), to make up for the inability. Mugen extracts three different granularities of evidence: coarse-, middle- and fine-grained evidence, and integrates evidence with the original passages, achieving significant and consistent performance improvement on four multi-choice MRC benchmarks.

Loudspeaker rendering techniques that create phantom sound sources often assume an equidistant loudspeaker layout. Typical home setups might not fulfill this condition as loudspeakers deviate from canonical positions, thus requiring a corresponding calibration. The standard approach is to compensate for delays and to match the loudness of each loudspeaker at the listener's location. It was found that a shift of the phantom image occurs when this calibration procedure is applied and one of a pair of loudspeakers is significantly closer to the listener than the other. In this paper, a novel approach to panning on non-equidistant loudspeaker layouts is presented whereby the panning position is governed by the direct sound and the perceived loudness is governed by the full impulse response. Subjective listening tests are presented that validate the approach and quantify the perceived effect of the compensation. In a setup where the standard calibration leads to an average error of 10 degrees, the proposed direct sound compensation largely returns the phantom source to its intended position.

Language models have been successfully used to model natural signals, such as images, speech, and music. A key component of these models is a high quality neural compression model that can compress high-dimensional natural signals into lower dimensional discrete tokens. To that end, we introduce a high-fidelity universal neural audio compression algorithm that achieves ~90x compression of 44.1 KHz audio into tokens at just 8kbps bandwidth. We achieve this by combining advances in high-fidelity audio generation with better vector quantization techniques from the image domain, along with improved adversarial and reconstruction losses. We compress all domains (speech, environment, music, etc.) with a single universal model, making it widely applicable to generative modeling of all audio. We compare with competing audio compression algorithms, and find our method outperforms them significantly. We provide thorough ablations for every design choice, as well as open-source code and trained model weights. We hope our work can lay the foundation for the next generation of high-fidelity audio modeling.

Graph Neural Networks (GNNs) are state-of-the-art models for performing prediction tasks on graphs. While existing GNNs have shown great performance on various tasks related to graphs, little attention has been paid to the scenario where out-of-distribution (OOD) nodes exist in the graph during training and inference. Borrowing the concept from CV and NLP, we define OOD nodes as nodes with labels unseen from the training set. Since a lot of networks are automatically constructed by programs, real-world graphs are often noisy and may contain nodes from unknown distributions. In this work, we define the problem of graph learning with out-of-distribution nodes. Specifically, we aim to accomplish two tasks: 1) detect nodes which do not belong to the known distribution and 2) classify the remaining nodes to be one of the known classes. We demonstrate that the connection patterns in graphs are informative for outlier detection, and propose Out-of-Distribution Graph Attention Network (OODGAT), a novel GNN model which explicitly models the interaction between different kinds of nodes and separate inliers from outliers during feature propagation. Extensive experiments show that OODGAT outperforms existing outlier detection methods by a large margin, while being better or comparable in terms of in-distribution classification.

Generative models are now capable of producing highly realistic images that look nearly indistinguishable from the data on which they are trained. This raises the question: if we have good enough generative models, do we still need datasets? We investigate this question in the setting of learning general-purpose visual representations from a black-box generative model rather than directly from data. Given an off-the-shelf image generator without any access to its training data, we train representations from the samples output by this generator. We compare several representation learning methods that can be applied to this setting, using the latent space of the generator to generate multiple "views" of the same semantic content. We show that for contrastive methods, this multiview data can naturally be used to identify positive pairs (nearby in latent space) and negative pairs (far apart in latent space). We find that the resulting representations rival those learned directly from real data, but that good performance requires care in the sampling strategy applied and the training method. Generative models can be viewed as a compressed and organized copy of a dataset, and we envision a future where more and more "model zoos" proliferate while datasets become increasingly unwieldy, missing, or private. This paper suggests several techniques for dealing with visual representation learning in such a future. Code is released on our project page: //ali-design.github.io/GenRep/

Video captioning is a challenging task that requires a deep understanding of visual scenes. State-of-the-art methods generate captions using either scene-level or object-level information but without explicitly modeling object interactions. Thus, they often fail to make visually grounded predictions, and are sensitive to spurious correlations. In this paper, we propose a novel spatio-temporal graph model for video captioning that exploits object interactions in space and time. Our model builds interpretable links and is able to provide explicit visual grounding. To avoid unstable performance caused by the variable number of objects, we further propose an object-aware knowledge distillation mechanism, in which local object information is used to regularize global scene features. We demonstrate the efficacy of our approach through extensive experiments on two benchmarks, showing our approach yields competitive performance with interpretable predictions.

北京阿比特科技有限公司