We address the problem of stable and robust control of vehicles with lateral error dynamics for the application of lane keeping. Lane departure is the primary reason for half of the fatalities in road accidents, making the development of stable, adaptive and robust controllers a necessity. Traditional linear feedback controllers achieve satisfactory tracking performance, however, they exhibit unstable behavior when uncertainties are induced into the system. Any disturbance or uncertainty introduced to the steering-angle input can be catastrophic for the vehicle. Therefore, controllers must be developed to actively handle such uncertainties. In this work, we introduce a Neural L1 Adaptive controller (Neural-L1) which learns the uncertainties in the lateral error dynamics of a front-steered Ackermann vehicle and guarantees stability and robustness. Our contributions are threefold: i) We extend the theoretical results for guaranteed stability and robustness of conventional L1 Adaptive controllers to Neural-L1; ii) We implement a Neural-L1 for the lane keeping application which learns uncertainties in the dynamics accurately; iii)We evaluate the performance of Neural-L1 on a physics-based simulator, PyBullet, and conduct extensive real-world experiments with the F1TENTH platform to demonstrate superior reference trajectory tracking performance of Neural-L1 compared to other state-of-the-art controllers, in the presence of uncertainties. Our project page, including supplementary material and videos, can be found at //mukhe027.github.io/Neural-Adaptive-Control/
This paper discusses the experiences gained from designing, deploying and maintaining low-power wireless sensor networks in three geothermally active remote locations in Iceland. The purpose of deploying the network was to collect soil temperature data and investigate the impact of global warming on (sub)Arctic climate and subsequent carbon release. Functional networks from three sites with no direct access to power and the internet have been providing researchers with insight into the warming impacts since 2021. The network employs low-power wireless sensor nodes equipped with DASH7 communication protocol, providing real-time data and remote access to sensors and instruments deployed in the field. In addition to discussing the architecture and deployment of the network, we conduct a primary analysis using models and methods to demonstrate the feasibility of harvesting energy from the temperature gradient between geothermally active soil and air.
The feedforward (FFW) layers in standard transformer architectures incur a linear increase in computational costs and activation memory as the hidden layer width grows. Sparse mixture-of-experts (MoE) architectures have emerged as a viable approach to address this issue by decoupling model size from computational cost. The recent discovery of the fine-grained MoE scaling law shows that higher granularity leads to better performance. However, existing MoE models are limited to a small number of experts due to computational and optimization challenges. This paper introduces PEER (parameter efficient expert retrieval), a novel layer design that utilizes the product key technique for sparse retrieval from a vast pool of tiny experts (over a million). Experiments on language modeling tasks demonstrate that PEER layers outperform dense FFWs and coarse-grained MoEs in terms of performance-compute trade-off. By enabling efficient utilization of a massive number of experts, PEER unlocks the potential for further scaling of transformer models while maintaining computational efficiency.
In many classification applications, the prediction of a deep neural network (DNN) based classifier needs to be accompanied by some confidence indication. Two popular approaches for that aim are: 1) Calibration: modifies the classifier's softmax values such that the maximal value better estimates the correctness probability; and 2) Conformal Prediction (CP): produces a prediction set of candidate labels that contains the true label with a user-specified probability, guaranteeing marginal coverage, rather than, e.g., per class coverage. In practice, both types of indications are desirable, yet, so far the interplay between them has not been investigated. We start this paper with an extensive empirical study of the effect of the popular Temperature Scaling (TS) calibration on prominent CP methods and reveal that while it improves the class-conditional coverage of adaptive CP methods, surprisingly, it negatively affects their prediction set sizes. Subsequently, we explore the effect of TS beyond its calibration application and offer simple guidelines for practitioners to trade prediction set size and conditional coverage of adaptive CP methods while effectively combining them with calibration. Finally, we present a theoretical analysis of the effect of TS on the prediction set sizes, revealing several mathematical properties of the procedure, according to which we provide reasoning for this unintuitive phenomenon.
Semi-structured data formats such as JSON have proved to be useful data models for applications that require flexibility in the format of data stored. However, JSON data often come without the schemas that are typically available with relational data. This has resulted in a number of tools for discovering schemas from a collection of data. Although such tools can be useful, existing approaches focus on the syntax of documents and ignore semantic information. In this work, we explore the automatic addition of meaningful semantic information to discovered schemas similar to information that is added by human schema authors. We leverage large language models and a corpus of manually authored JSON Schema documents to generate natural language descriptions of schema elements, meaningful names for reusable definitions, and identify which discovered properties are most useful and which can be considered "noise". Our approach performs well on existing metrics for text generation that have been previously shown to correlate well with human judgement.
We consider the problem of parameter estimation in a high-dimensional generalized linear model. Spectral methods obtained via the principal eigenvector of a suitable data-dependent matrix provide a simple yet surprisingly effective solution. However, despite their wide use, a rigorous performance characterization, as well as a principled way to preprocess the data, are available only for unstructured (i.i.d.\ Gaussian and Haar orthogonal) designs. In contrast, real-world data matrices are highly structured and exhibit non-trivial correlations. To address the problem, we consider correlated Gaussian designs capturing the anisotropic nature of the features via a covariance matrix $\Sigma$. Our main result is a precise asymptotic characterization of the performance of spectral estimators. This allows us to identify the optimal preprocessing that minimizes the number of samples needed for parameter estimation. Surprisingly, such preprocessing is universal across a broad set of designs, which partly addresses a conjecture on optimal spectral estimators for rotationally invariant models. Our principled approach vastly improves upon previous heuristic methods, including for designs common in computational imaging and genetics. The proposed methodology, based on approximate message passing, is broadly applicable and opens the way to the precise characterization of spiked matrices and of the corresponding spectral methods in a variety of settings.
Arbitrary varying channels (AVC) are used to model communication settings in which a channel state may vary arbitrarily over time. Their primary objective is to circumvent statistical assumptions on channel variation. Traditional studies on AVCs optimize rate subject to the worst-case state sequence. While this approach is resilient to channel variations, it may result in low rates for state sequences that are associated with relatively good channels. This paper addresses the analysis of AVCs through the lens of competitive analysis, where solution quality is measured with respect to the optimal solution had the state sequence been known in advance. Our main result demonstrates that codes constructed by a single input distribution do not achieve optimal competitive performance over AVCs. This stands in contrast to the single-letter capacity formulae for AVCs, and it indicates, in our setting, that even though the encoder cannot predict the subsequent channel states, it benefits from varying its input distribution as time proceeds.
The use of multiple camera technologies in a combined multimodal monitoring system for plant phenotyping offers promising benefits. Compared to configurations that only utilize a single camera technology, cross-modal patterns can be recorded that allow a more comprehensive assessment of plant phenotypes. However, the effective utilization of cross-modal patterns is dependent on precise image registration to achieve pixel-accurate alignment, a challenge often complicated by parallax and occlusion effects inherent in plant canopy imaging. In this study, we propose a novel multimodal 3D image registration method that addresses these challenges by integrating depth information from a time-of-flight camera into the registration process. By leveraging depth data, our method mitigates parallax effects and thus facilitates more accurate pixel alignment across camera modalities. Additionally, we introduce an automated mechanism to identify and differentiate different types of occlusions, thereby minimizing the introduction of registration errors. To evaluate the efficacy of our approach, we conduct experiments on a diverse image dataset comprising six distinct plant species with varying leaf geometries. Our results demonstrate the robustness of the proposed registration algorithm, showcasing its ability to achieve accurate alignment across different plant types and camera compositions. Compared to previous methods it is not reliant on detecting plant specific image features and can thereby be utilized for a wide variety of applications in plant sciences. The registration approach principally scales to arbitrary numbers of cameras with different resolutions and wavelengths. Overall, our study contributes to advancing the field of plant phenotyping by offering a robust and reliable solution for multimodal image registration.
As autonomous driving systems being deployed to millions of vehicles, there is a pressing need of improving the system's scalability, safety and reducing the engineering cost. A realistic, scalable, and practical simulator of the driving world is highly desired. In this paper, we present an efficient solution based on generative models which learns the dynamics of the driving scenes. With this model, we can not only simulate the diverse futures of a given driving scenario but also generate a variety of driving scenarios conditioned on various prompts. Our innovative design allows the model to operate in both full-Autoregressive and partial-Autoregressive modes, significantly improving inference and training speed without sacrificing generative capability. This efficiency makes it ideal for being used as an online reactive environment for reinforcement learning, an evaluator for planning policies, and a high-fidelity simulator for testing. We evaluated our model against two real-world datasets: the Waymo motion dataset and the nuPlan dataset. On the simulation realism and scene generation benchmark, our model achieves the state-of-the-art performance. And in the planning benchmarks, our planner outperforms the prior arts. We conclude that the proposed generative model may serve as a foundation for a variety of motion planning tasks, including data generation, simulation, planning, and online training. Source code is public at //github.com/HorizonRobotics/GUMP/
Large Language Models (LLMs) have shown excellent generalization capabilities that have led to the development of numerous models. These models propose various new architectures, tweaking existing architectures with refined training strategies, increasing context length, using high-quality training data, and increasing training time to outperform baselines. Analyzing new developments is crucial for identifying changes that enhance training stability and improve generalization in LLMs. This survey paper comprehensively analyses the LLMs architectures and their categorization, training strategies, training datasets, and performance evaluations and discusses future research directions. Moreover, the paper also discusses the basic building blocks and concepts behind LLMs, followed by a complete overview of LLMs, including their important features and functions. Finally, the paper summarizes significant findings from LLM research and consolidates essential architectural and training strategies for developing advanced LLMs. Given the continuous advancements in LLMs, we intend to regularly update this paper by incorporating new sections and featuring the latest LLM models.
In many important graph data processing applications the acquired information includes both node features and observations of the graph topology. Graph neural networks (GNNs) are designed to exploit both sources of evidence but they do not optimally trade-off their utility and integrate them in a manner that is also universal. Here, universality refers to independence on homophily or heterophily graph assumptions. We address these issues by introducing a new Generalized PageRank (GPR) GNN architecture that adaptively learns the GPR weights so as to jointly optimize node feature and topological information extraction, regardless of the extent to which the node labels are homophilic or heterophilic. Learned GPR weights automatically adjust to the node label pattern, irrelevant on the type of initialization, and thereby guarantee excellent learning performance for label patterns that are usually hard to handle. Furthermore, they allow one to avoid feature over-smoothing, a process which renders feature information nondiscriminative, without requiring the network to be shallow. Our accompanying theoretical analysis of the GPR-GNN method is facilitated by novel synthetic benchmark datasets generated by the so-called contextual stochastic block model. We also compare the performance of our GNN architecture with that of several state-of-the-art GNNs on the problem of node-classification, using well-known benchmark homophilic and heterophilic datasets. The results demonstrate that GPR-GNN offers significant performance improvement compared to existing techniques on both synthetic and benchmark data.