Document-level information extraction (IE) is a crucial task in natural language processing (NLP). This paper conducts a systematic review of recent document-level IE literature. In addition, we conduct a thorough error analysis with current state-of-the-art algorithms and identify their limitations as well as the remaining challenges for the task of document-level IE. According to our findings, labeling noises, entity coreference resolution, and lack of reasoning, severely affect the performance of document-level IE. The objective of this survey paper is to provide more insights and help NLP researchers to further enhance document-level IE performance.
Contemporary large-scale visual language models (VLMs) exhibit strong representation capacities, making them ubiquitous for enhancing image and text understanding tasks. They are often trained in a contrastive manner on a large and diverse corpus of images and corresponding text captions scraped from the internet. Despite this, VLMs often struggle with compositional reasoning tasks which require a fine-grained understanding of the complex interactions of objects and their attributes. This failure can be attributed to two main factors: 1) Contrastive approaches have traditionally focused on mining negative examples from existing datasets. However, the mined negative examples might not be difficult for the model to discriminate from the positive. An alternative to mining would be negative sample generation 2) But existing generative approaches primarily focus on generating hard negative texts associated with a given image. Mining in the other direction, i.e., generating negative image samples associated with a given text has been ignored. To overcome both these limitations, we propose a framework that not only mines in both directions but also generates challenging negative samples in both modalities, i.e., images and texts. Leveraging these generative hard negative samples, we significantly enhance VLMs' performance in tasks involving multimodal compositional reasoning. Our code and dataset are released at //ugorsahin.github.io/enhancing-multimodal-compositional-reasoning-of-vlm.html.
We consider two popular approaches to Knowledge Graph Completion (KGC): textual models that rely on textual entity descriptions, and structure-based models that exploit the connectivity structure of the Knowledge Graph (KG). Preliminary experiments show that these approaches have complementary strengths: structure-based models perform well when the gold answer is easily reachable from the query head in the KG, while textual models exploit descriptions to give good performance even when the gold answer is not reachable. In response, we explore ensembling as a way of combining the best of both approaches. We propose a novel method for learning query-dependent ensemble weights by using the distributions of scores assigned by individual models to all candidate entities. Our ensemble baseline achieves state-of-the-art results on three standard KGC datasets, with up to 6.8 pt MRR and 8.3 pt Hits@1 gains over best individual models.
Unsupervised machine learning models build an internal representation of their training data without the need for explicit human guidance or feature engineering. This learned representation provides insights into which features of the data are relevant for the task at hand. In the context of quantum physics, training models to describe quantum states without human intervention offers a promising approach to gaining insight into how machines represent complex quantum states. The ability to interpret the learned representation may offer a new perspective on non-trivial features of quantum systems and their efficient representation. We train a generative model on two-qubit density matrices generated by a parameterized quantum circuit. In a series of computational experiments, we investigate the learned representation of the model and its internal understanding of the data. We observe that the model learns an interpretable representation which relates the quantum states to their underlying entanglement characteristics. In particular, our results demonstrate that the latent representation of the model is directly correlated with the entanglement measure concurrence. The insights from this study represent proof of concept towards interpretable machine learning of quantum states. Our approach offers insight into how machines learn to represent small-scale quantum systems autonomously.
Artificial intelligence operations (AIOps) play a pivotal role in identifying, mitigating, and analyzing anomalous system behaviors and alerts. However, the research landscape in this field remains limited, leaving significant gaps unexplored. This study introduces a novel hybrid framework through an innovative algorithm that incorporates an unsupervised strategy. This strategy integrates Principal Component Analysis (PCA) and Artificial Neural Networks (ANNs) and uses a custom loss function to substantially enhance the effectiveness of log anomaly detection. The proposed approach encompasses the utilization of both simulated and real-world datasets, including logs from SockShop and Hadoop Distributed File System (HDFS). The experimental results are highly promising, demonstrating significant reductions in pseudo-positives. Moreover, this strategy offers notable advantages, such as the ability to process logs in their raw, unprocessed form, and the potential for further enhancements. The successful implementation of this approach showcases a remarkable reduction in anomalous logs, thus unequivocally establishing the efficacy of the proposed methodology. Ultimately, this study makes a substantial contribution to the advancement of log anomaly detection within AIOps platforms, addressing the critical need for effective and efficient log analysis in modern and complex systems.
We propose a framework for expressing and analyzing the Quality of Service (QoS) of message-passing systems using a choreographic model that consists of g-choreographies and Communicating Finite State machines (CFSMs). The following are our three main contributions: (I) an extension of CFSMs with non-functional contracts to specify quantitative constraints of local computations, (II) a dynamic temporal logic capable of expressing QoS, properties of systems relative to the g-choreography that specifies the communication protocol, (III) the semi-decidability of our logic which enables a bounded model-checking approach to verify QoS property of communicating systems.
This paper discusses the formalization of proofs "by diagram chasing", a standard technique for proving properties in abelian categories. We discuss how the essence of diagram chases can be captured by a simple many-sorted first-order theory, and we study the models and decidability of this theory. The longer-term motivation of this work is the design of a computer-aided instrument for writing reliable proofs in homological algebra, based on interactive theorem provers.
Recent contrastive representation learning methods rely on estimating mutual information (MI) between multiple views of an underlying context. E.g., we can derive multiple views of a given image by applying data augmentation, or we can split a sequence into views comprising the past and future of some step in the sequence. Contrastive lower bounds on MI are easy to optimize, but have a strong underestimation bias when estimating large amounts of MI. We propose decomposing the full MI estimation problem into a sum of smaller estimation problems by splitting one of the views into progressively more informed subviews and by applying the chain rule on MI between the decomposed views. This expression contains a sum of unconditional and conditional MI terms, each measuring modest chunks of the total MI, which facilitates approximation via contrastive bounds. To maximize the sum, we formulate a contrastive lower bound on the conditional MI which can be approximated efficiently. We refer to our general approach as Decomposed Estimation of Mutual Information (DEMI). We show that DEMI can capture a larger amount of MI than standard non-decomposed contrastive bounds in a synthetic setting, and learns better representations in a vision domain and for dialogue generation.
Residual networks (ResNets) have displayed impressive results in pattern recognition and, recently, have garnered considerable theoretical interest due to a perceived link with neural ordinary differential equations (neural ODEs). This link relies on the convergence of network weights to a smooth function as the number of layers increases. We investigate the properties of weights trained by stochastic gradient descent and their scaling with network depth through detailed numerical experiments. We observe the existence of scaling regimes markedly different from those assumed in neural ODE literature. Depending on certain features of the network architecture, such as the smoothness of the activation function, one may obtain an alternative ODE limit, a stochastic differential equation or neither of these. These findings cast doubts on the validity of the neural ODE model as an adequate asymptotic description of deep ResNets and point to an alternative class of differential equations as a better description of the deep network limit.
We introduce a multi-task setup of identifying and classifying entities, relations, and coreference clusters in scientific articles. We create SciERC, a dataset that includes annotations for all three tasks and develop a unified framework called Scientific Information Extractor (SciIE) for with shared span representations. The multi-task setup reduces cascading errors between tasks and leverages cross-sentence relations through coreference links. Experiments show that our multi-task model outperforms previous models in scientific information extraction without using any domain-specific features. We further show that the framework supports construction of a scientific knowledge graph, which we use to analyze information in scientific literature.
High spectral dimensionality and the shortage of annotations make hyperspectral image (HSI) classification a challenging problem. Recent studies suggest that convolutional neural networks can learn discriminative spatial features, which play a paramount role in HSI interpretation. However, most of these methods ignore the distinctive spectral-spatial characteristic of hyperspectral data. In addition, a large amount of unlabeled data remains an unexploited gold mine for efficient data use. Therefore, we proposed an integration of generative adversarial networks (GANs) and probabilistic graphical models for HSI classification. Specifically, we used a spectral-spatial generator and a discriminator to identify land cover categories of hyperspectral cubes. Moreover, to take advantage of a large amount of unlabeled data, we adopted a conditional random field to refine the preliminary classification results generated by GANs. Experimental results obtained using two commonly studied datasets demonstrate that the proposed framework achieved encouraging classification accuracy using a small number of data for training.