Aiming at privacy preservation, Federated Learning (FL) is an emerging machine learning approach enabling model training on decentralized devices or data sources. The learning mechanism of FL relies on aggregating parameter updates from individual clients. However, this process may pose a potential security risk due to the presence of malicious devices. Existing solutions are either costly due to the use of compute-intensive technology, or restrictive for reasons of strong assumptions such as the prior knowledge of the number of attackers and how they attack. Few methods consider both privacy constraints and uncertain attack scenarios. In this paper, we propose a robust FL approach based on the credibility management scheme, called Fed-Credit. Unlike previous studies, our approach does not require prior knowledge of the nodes and the data distribution. It maintains and employs a credibility set, which weighs the historical clients' contributions based on the similarity between the local models and global model, to adjust the global model update. The subtlety of Fed-Credit is that the time decay and attitudinal value factor are incorporated into the dynamic adjustment of the reputation weights and it boasts a computational complexity of O(n) (n is the number of the clients). We conducted extensive experiments on the MNIST and CIFAR-10 datasets under 5 types of attacks. The results exhibit superior accuracy and resilience against adversarial attacks, all while maintaining comparatively low computational complexity. Among these, on the Non-IID CIFAR-10 dataset, our algorithm exhibited performance enhancements of 19.5% and 14.5%, respectively, in comparison to the state-of-the-art algorithm when dealing with two types of data poisoning attacks.
This research introduces Procedural Artificial Narrative using Generative AI (PANGeA), a structured approach for leveraging large language models (LLMs), guided by a game designer's high-level criteria, to generate narrative content for turn-based role-playing video games (RPGs). Distinct from prior applications of LLMs used for video game design, PANGeA innovates by not only generating game level data (which includes, but is not limited to, setting, key items, and non-playable characters (NPCs)), but by also fostering dynamic, free-form interactions between the player and the environment that align with the procedural game narrative. The NPCs generated by PANGeA are personality-biased and express traits from the Big 5 Personality Model in their generated responses. PANGeA addresses challenges behind ingesting free-form text input, which can prompt LLM responses beyond the scope of the game narrative. A novel validation system that uses the LLM's intelligence evaluates text input and aligns generated responses with the unfolding narrative. Making these interactions possible, PANGeA is supported by a server that hosts a custom memory system that supplies context for augmenting generated responses thus aligning them with the procedural narrative. For its broad application, the server has a REST interface enabling any game engine to integrate directly with PANGeA, as well as an LLM interface adaptable with local or private LLMs. PANGeA's ability to foster dynamic narrative generation by aligning responses with the procedural narrative is demonstrated through an empirical study and ablation test of two versions of a demo game. These are, a custom, browser-based GPT and a Unity demo. As the results show, PANGeA holds potential to assist game designers in using LLMs to generate narrative-consistent content even when provided varied and unpredictable, free-form text input.
Bilevel optimization has shown its utility across various machine learning settings, yet most algorithms in practice require second-order information, making it challenging to scale them up. Only recently, a paradigm of first-order algorithms emerged, capable of effectively addressing bilevel optimization problems. Nevertheless, the practical efficiency of this paradigm remains unverified, particularly in the context of large language models (LLMs). This paper introduces the first scalable instantiation of this paradigm called ScaleBiO, focusing on bilevel optimization for large-scale LLM data reweighting. By combining with a recently proposed memory-efficient training technique called LISA, our novel algorithm allows the paradigm to scale to 34-billion-parameter LLMs on eight A40 GPUs, marking the first successful application of bilevel optimization under practical scenarios for large-sized LLMs. Empirically, extensive experiments on data reweighting verify the effectiveness of ScaleBiO for different-scaled models, including GPT-2, LLaMA-3-8B, GPT-NeoX-20B, and Yi-34B, where bilevel optimization succeeds in filtering irrelevant data samples and selecting informative samples. Theoretically, ScaleBiO ensures the optimality of the learned data weights, along with a convergence guarantee matching the conventional first-order bilevel optimization paradigm on smooth and strongly convex objectives.
Federated Learning (FL) is a distributed machine learning approach that enables training on decentralized data while preserving privacy. However, FL systems often involve resource-constrained client devices with limited computational power, memory, storage, and bandwidth. This paper introduces FedMap, a novel method that aims to enhance the communication efficiency of FL deployments by collaboratively learning an increasingly sparse global model through iterative, unstructured pruning. Importantly, FedMap trains a global model from scratch, unlike other methods reported in the literature, making it ideal for privacy-critical use cases such as in the medical and finance domains, where suitable pre-training data is often limited. FedMap adapts iterative magnitude-based pruning to the FL setting, ensuring all clients prune and refine the same subset of the global model parameters, therefore gradually reducing the global model size and communication overhead. The iterative nature of FedMap, forming subsequent models as subsets of predecessors, avoids parameter reactivation issues seen in prior work, resulting in stable performance. In this paper we provide an extensive evaluation of FedMap across diverse settings, datasets, model architectures, and hyperparameters, assessing performance in both IID and non-IID environments. Comparative analysis against the baseline approach demonstrates FedMap's ability to achieve more stable client model performance. For IID scenarios, FedMap achieves over $90$\% pruning without significant performance degradation. In non-IID settings, it achieves at least $~80$\% pruning while maintaining accuracy. FedMap offers a promising solution to alleviate communication bottlenecks in FL systems while retaining model accuracy.
Recent advances in prompt optimization have notably enhanced the performance of pre-trained language models (PLMs) on downstream tasks. However, the potential of optimized prompts on domain generalization has been under-explored. To explore the nature of prompt generalization on unknown domains, we conduct pilot experiments and find that (i) Prompts gaining more attention weight from PLMs' deep layers are more generalizable and (ii) Prompts with more stable attention distributions in PLMs' deep layers are more generalizable. Thus, we offer a fresh objective towards domain-generalizable prompts optimization named "Concentration", which represents the "lookback" attention from the current decoding token to the prompt tokens, to increase the attention strength on prompts and reduce the fluctuation of attention distribution. We adapt this new objective to popular soft prompt and hard prompt optimization methods, respectively. Extensive experiments demonstrate that our idea improves comparison prompt optimization methods by 1.42% for soft prompt generalization and 2.16% for hard prompt generalization in accuracy on the multi-source domain generalization setting, while maintaining satisfying in-domain performance. The promising results validate the effectiveness of our proposed prompt optimization objective and provide key insights into domain-generalizable prompts.
Recent advances of data-driven machine learning have revolutionized fields like computer vision, reinforcement learning, and many scientific and engineering domains. In many real-world and scientific problems, systems that generate data are governed by physical laws. Recent work shows that it provides potential benefits for machine learning models by incorporating the physical prior and collected data, which makes the intersection of machine learning and physics become a prevailing paradigm. In this survey, we present this learning paradigm called Physics-Informed Machine Learning (PIML) which is to build a model that leverages empirical data and available physical prior knowledge to improve performance on a set of tasks that involve a physical mechanism. We systematically review the recent development of physics-informed machine learning from three perspectives of machine learning tasks, representation of physical prior, and methods for incorporating physical prior. We also propose several important open research problems based on the current trends in the field. We argue that encoding different forms of physical prior into model architectures, optimizers, inference algorithms, and significant domain-specific applications like inverse engineering design and robotic control is far from fully being explored in the field of physics-informed machine learning. We believe that this study will encourage researchers in the machine learning community to actively participate in the interdisciplinary research of physics-informed machine learning.
Federated learning (FL) has been developed as a promising framework to leverage the resources of edge devices, enhance customers' privacy, comply with regulations, and reduce development costs. Although many methods and applications have been developed for FL, several critical challenges for practical FL systems remain unaddressed. This paper provides an outlook on FL development, categorized into five emerging directions of FL, namely algorithm foundation, personalization, hardware and security constraints, lifelong learning, and nonstandard data. Our unique perspectives are backed by practical observations from large-scale federated systems for edge devices.
There recently has been a surge of interest in developing a new class of deep learning (DL) architectures that integrate an explicit time dimension as a fundamental building block of learning and representation mechanisms. In turn, many recent results show that topological descriptors of the observed data, encoding information on the shape of the dataset in a topological space at different scales, that is, persistent homology of the data, may contain important complementary information, improving both performance and robustness of DL. As convergence of these two emerging ideas, we propose to enhance DL architectures with the most salient time-conditioned topological information of the data and introduce the concept of zigzag persistence into time-aware graph convolutional networks (GCNs). Zigzag persistence provides a systematic and mathematically rigorous framework to track the most important topological features of the observed data that tend to manifest themselves over time. To integrate the extracted time-conditioned topological descriptors into DL, we develop a new topological summary, zigzag persistence image, and derive its theoretical stability guarantees. We validate the new GCNs with a time-aware zigzag topological layer (Z-GCNETs), in application to traffic forecasting and Ethereum blockchain price prediction. Our results indicate that Z-GCNET outperforms 13 state-of-the-art methods on 4 time series datasets.
Meta reinforcement learning (meta-RL) extracts knowledge from previous tasks and achieves fast adaptation to new tasks. Despite recent progress, efficient exploration in meta-RL remains a key challenge in sparse-reward tasks, as it requires quickly finding informative task-relevant experiences in both meta-training and adaptation. To address this challenge, we explicitly model an exploration policy learning problem for meta-RL, which is separated from exploitation policy learning, and introduce a novel empowerment-driven exploration objective, which aims to maximize information gain for task identification. We derive a corresponding intrinsic reward and develop a new off-policy meta-RL framework, which efficiently learns separate context-aware exploration and exploitation policies by sharing the knowledge of task inference. Experimental evaluation shows that our meta-RL method significantly outperforms state-of-the-art baselines on various sparse-reward MuJoCo locomotion tasks and more complex sparse-reward Meta-World tasks.
Language model pre-training, such as BERT, has significantly improved the performances of many natural language processing tasks. However, pre-trained language models are usually computationally expensive and memory intensive, so it is difficult to effectively execute them on some resource-restricted devices. To accelerate inference and reduce model size while maintaining accuracy, we firstly propose a novel transformer distillation method that is a specially designed knowledge distillation (KD) method for transformer-based models. By leveraging this new KD method, the plenty of knowledge encoded in a large teacher BERT can be well transferred to a small student TinyBERT. Moreover, we introduce a new two-stage learning framework for TinyBERT, which performs transformer distillation at both the pre-training and task-specific learning stages. This framework ensures that TinyBERT can capture both the general-domain and task-specific knowledge of the teacher BERT. TinyBERT is empirically effective and achieves comparable results with BERT in GLUE datasets, while being 7.5x smaller and 9.4x faster on inference. TinyBERT is also significantly better than state-of-the-art baselines, even with only about 28% parameters and 31% inference time of baselines.
This paper surveys the machine learning literature and presents machine learning as optimization models. Such models can benefit from the advancement of numerical optimization techniques which have already played a distinctive role in several machine learning settings. Particularly, mathematical optimization models are presented for commonly used machine learning approaches for regression, classification, clustering, and deep neural networks as well new emerging applications in machine teaching and empirical model learning. The strengths and the shortcomings of these models are discussed and potential research directions are highlighted.