亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

We show that contrary to appearances, Multimodal Type Theory (MTT) over a 2-category M can be interpreted in any M-shaped diagram of categories having, and functors preserving, M-sized limits, without the need for extra left adjoints. This is achieved by a construction called "co-dextrification" that co-freely adds left adjoints to any such diagram, which can then be used to interpret the "context lock" functors of MTT. Furthermore, if any of the functors in the diagram have right adjoints, these can also be internalized in type theory as negative modalities in the style of FitchTT. We introduce the name Multimodal Adjoint Type Theory (MATT) for the resulting combined general modal type theory. In particular, we can interpret MATT in any finite diagram of toposes and geometric morphisms, with positive modalities for inverse image functors and negative modalities for direct image functors.

相關內容

Existing nonlocal diffusion models are predominantly classified into two categories: bond-based models, which involve a single-fold integral and usually simulate isotropic diffusion, and state-based models, which contain a double-fold integral and can additionally prototype anisotropic diffusion. While bond-based models exhibit computational efficiency, they are somewhat limited in their modeling capabilities. In this paper, we develop a novel bond-based nonlocal diffusion model with matrix-valued coefficients in non-divergence form. Our approach incorporates the coefficients into a covariance matrix and employs the multivariate Gaussian function with truncation to define the kernel function, and subsequently model the nonlocal diffusion process through the bond-based formulation. We successfully establish the well-posedness of the proposed model along with deriving some of its properties on maximum principle and mass conservation. Furthermore, an efficient linear collocation scheme is designed for numerical solution of our model. Comprehensive experiments in two and three dimensions are conducted to showcase application of the proposed nonlocal model to both isotropic and anisotropic diffusion problems and to demonstrate numerical accuracy and effective asymptotic compatibility of the proposed collocation scheme.

Regularization promotes well-posedness in solving an inverse problem with incomplete measurement data. The regularization term is typically designed based on a priori characterization of the unknown signal, such as sparsity or smoothness. The standard inhomogeneous regularization incorporates a spatially changing exponent $p$ of the standard $\ell_p$ norm-based regularization to recover a signal whose characteristic varies spatially. This study proposes a weighted inhomogeneous regularization that extends the standard inhomogeneous regularization through new exponent design and weighting using spatially varying weights. The new exponent design avoids misclassification when different characteristics stay close to each other. The weights handle another issue when the region of one characteristic is too small to be recovered effectively by the $\ell_p$ norm-based regularization even after identified correctly. A suite of numerical tests shows the efficacy of the proposed weighted inhomogeneous regularization, including synthetic image experiments and real sea ice recovery from its incomplete wave measurements.

By using the stochastic particle method, the truncated Euler-Maruyama (TEM) method is proposed for numerically solving McKean-Vlasov stochastic differential equations (MV-SDEs), possibly with both drift and diffusion coefficients having super-linear growth in the state variable. Firstly, the result of the propagation of chaos in the L^q (q\geq 2) sense is obtained under general assumptions. Then, the standard 1/2-order strong convergence rate in the L^q sense of the proposed method corresponding to the particle system is derived by utilizing the stopping time analysis technique. Furthermore, long-time dynamical properties of MV-SDEs, including the moment boundedness, stability, and the existence and uniqueness of the invariant probability measure, can be numerically realized by the TEM method. Additionally, it is proven that the numerical invariant measure converges to the underlying one of MV-SDEs in the L^2-Wasserstein metric. Finally, the conclusions obtained in this paper are verified through examples and numerical simulations.

We give a full classification of continuous flexible discrete axial cone-nets, which are called axial C-hedra. The obtained result can also be used to construct their semi-discrete analogs. Moreover, we identify a novel subclass within the determined class of (semi-)discrete axial cone-nets, whose members are named axial P-nets as they fulfill the proportion (P) of the intercept theorem. Known special cases of these axial P-nets are the smooth and discrete conic crease patterns with reflecting rule lines. By using a parallelism operation one can even generalize axial P-nets. The resulting general P-nets constitute a rich novel class of continuous flexible (semi-)discrete surfaces, which allow direct access to their spatial shapes by three control polylines. This intuitive method makes them suitable for transformable design tasks using interactive tools.

We consider the following problem that we call the Shortest Two Disjoint Paths problem: given an undirected graph $G=(V,E)$ with edge weights $w:E \rightarrow \mathbb{R}$, two terminals $s$ and $t$ in $G$, find two internally vertex-disjoint paths between $s$ and $t$ with minimum total weight. As shown recently by Schlotter and Seb\H{o} (2022), this problem becomes NP-hard if edges can have negative weights, even if the weight function is conservative, there are no cycles in $G$ with negative total weight. We propose a polynomial-time algorithm that solves the Shortest Two Disjoint Paths problem for conservative weights in the case when the negative-weight edges form a constant number of trees in $G$.

We study one generator quasi-cyclic codes and four-circulant codes, which are also quasi-cyclic but have two generators. We state the hull dimensions for both classes of codes in terms of the polynomials in their generating elements. We prove results such as the hull dimension of a four-circulant code is even and one-dimensional hull for double-circulant codes, which are special one generator codes, is not possible when the alphabet size $q$ is congruent to 3 mod 4. We also characterize linear complementary pairs among both classes of codes. Computational results on the code families in consideration are provided as well.

The theory of generalized locally Toeplitz (GLT) sequences is a powerful apparatus for computing the asymptotic spectral distribution of matrices $A_n$ arising from numerical discretizations of differential equations. Indeed, when the mesh fineness parameter $n$ tends to infinity, these matrices $A_n$ give rise to a sequence $\{A_n\}_n$, which often turns out to be a GLT sequence. In this paper, we extend the theory of GLT sequences in several directions: we show that every GLT sequence enjoys a normal form, we identify the spectral symbol of every GLT sequence formed by normal matrices, and we prove that, for every GLT sequence $\{A_n\}_n$ formed by normal matrices and every continuous function $f:\mathbb C\to\mathbb C$, the sequence $\{f(A_n)\}_n$ is again a GLT sequence whose spectral symbol is $f(\kappa)$, where $\kappa$ is the spectral symbol of $\{A_n\}_n$. In addition, using the theory of GLT sequences, we prove a spectral distribution result for perturbed normal matrices.

The increasing reliance on Computed Tomography Pulmonary Angiography (CTPA) for Pulmonary Embolism (PE) diagnosis presents challenges and a pressing need for improved diagnostic solutions. The primary objective of this study is to leverage deep learning techniques to enhance the Computer Assisted Diagnosis (CAD) of PE. With this aim, we propose a classifier-guided detection approach that effectively leverages the classifier's probabilistic inference to direct the detection predictions, marking a novel contribution in the domain of automated PE diagnosis. Our classification system includes an Attention-Guided Convolutional Neural Network (AG-CNN) that uses local context by employing an attention mechanism. This approach emulates a human expert's attention by looking at both global appearances and local lesion regions before making a decision. The classifier demonstrates robust performance on the FUMPE dataset, achieving an AUROC of 0.927, sensitivity of 0.862, specificity of 0.879, and an F1-score of 0.805 with the Inception-v3 backbone architecture. Moreover, AG-CNN outperforms the baseline DenseNet-121 model, achieving an 8.1% AUROC gain. While previous research has mostly focused on finding PE in the main arteries, our use of cutting-edge object detection models and ensembling techniques greatly improves the accuracy of detecting small embolisms in the peripheral arteries. Finally, our proposed classifier-guided detection approach further refines the detection metrics, contributing new state-of-the-art to the community: mAP$_{50}$, sensitivity, and F1-score of 0.846, 0.901, and 0.779, respectively, outperforming the former benchmark with a significant 3.7% improvement in mAP$_{50}$. Our research aims to elevate PE patient care by integrating AI solutions into clinical workflows, highlighting the potential of human-AI collaboration in medical diagnostics.

This paper considers the reliability of automatic differentiation (AD) for neural networks involving the nonsmooth MaxPool operation. We investigate the behavior of AD across different precision levels (16, 32, 64 bits) and convolutional architectures (LeNet, VGG, and ResNet) on various datasets (MNIST, CIFAR10, SVHN, and ImageNet). Although AD can be incorrect, recent research has shown that it coincides with the derivative almost everywhere, even in the presence of nonsmooth operations (such as MaxPool and ReLU). On the other hand, in practice, AD operates with floating-point numbers (not real numbers), and there is, therefore, a need to explore subsets on which AD can be numerically incorrect. These subsets include a bifurcation zone (where AD is incorrect over reals) and a compensation zone (where AD is incorrect over floating-point numbers but correct over reals). Using SGD for the training process, we study the impact of different choices of the nonsmooth Jacobian for the MaxPool function on the precision of 16 and 32 bits. These findings suggest that nonsmooth MaxPool Jacobians with lower norms help maintain stable and efficient test accuracy, whereas those with higher norms can result in instability and decreased performance. We also observe that the influence of MaxPool's nonsmooth Jacobians on learning can be reduced by using batch normalization, Adam-like optimizers, or increasing the precision level.

The goal of explainable Artificial Intelligence (XAI) is to generate human-interpretable explanations, but there are no computationally precise theories of how humans interpret AI generated explanations. The lack of theory means that validation of XAI must be done empirically, on a case-by-case basis, which prevents systematic theory-building in XAI. We propose a psychological theory of how humans draw conclusions from saliency maps, the most common form of XAI explanation, which for the first time allows for precise prediction of explainee inference conditioned on explanation. Our theory posits that absent explanation humans expect the AI to make similar decisions to themselves, and that they interpret an explanation by comparison to the explanations they themselves would give. Comparison is formalized via Shepard's universal law of generalization in a similarity space, a classic theory from cognitive science. A pre-registered user study on AI image classifications with saliency map explanations demonstrate that our theory quantitatively matches participants' predictions of the AI.

北京阿比特科技有限公司