亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Achieving subjective and objective quality assessment of underwater images is of high significance in underwater visual perception and image/video processing. However, the development of underwater image quality assessment (UIQA) is limited for the lack of comprehensive human subjective user study with publicly available dataset and reliable objective UIQA metric. To address this issue, we establish a large-scale underwater image dataset, dubbed UID2021, for evaluating no-reference UIQA metrics. The constructed dataset contains 60 multiply degraded underwater images collected from various sources, covering six common underwater scenes (i.e. bluish scene, bluish-green scene, greenish scene, hazy scene, low-light scene, and turbid scene), and their corresponding 900 quality improved versions generated by employing fifteen state-of-the-art underwater image enhancement and restoration algorithms. Mean opinion scores (MOS) for UID2021 are also obtained by using the pair comparison sorting method with 52 observers. Both in-air NR-IQA and underwater-specific algorithms are tested on our constructed dataset to fairly compare the performance and analyze their strengths and weaknesses. Our proposed UID2021 dataset enables ones to evaluate NR UIQA algorithms comprehensively and paves the way for further research on UIQA. Our UID2021 will be a free download and utilized for research purposes at: //github.com/Hou-Guojia/UID2021.

相關內容

數據集,又稱為資料集、數據集合或資料集合,是一種由數據所組成的集合。
Data set(或dataset)是一個數據的集合,通常以表格形式出現。每一列代表一個特定變量。每一行都對應于某一成員的數據集的問題。它列出的價值觀為每一個變量,如身高和體重的一個物體或價值的隨機數。每個數值被稱為數據資料。對應于行數,該數據集的數據可能包括一個或多個成員。

The optimal moment to start renal replacement therapy in a patient with acute kidney injury (AKI) remains a challenging problem in intensive care nephrology. Multiple randomised controlled trials have tried to answer this question, but these can, by definition, only analyse a limited number of treatment initiation strategies. In view of this, we use routinely collected observational data from the Ghent University Hospital intensive care units (ICUs) to investigate different pre-specified timing strategies for renal replacement therapy initiation based on time-updated levels of serum potassium, pH and fluid balance in critically ill patients with AKI with the aim to minimize 30-day ICU mortality. For this purpose, we apply statistical techniques for evaluating the impact of specific dynamic treatment regimes in the presence of ICU discharge as a competing event. We discuss two approaches, a non-parametric one - using an inverse probability weighted Aalen-Johansen estimator - and a semiparametric one - using dynamic-regime marginal structural models. Furthermore, we suggest an easy to implement cross-validation technique that can be used for the out-of-sample performance assessment of the optimal dynamic treatment regime. Our work illustrates the potential of data-driven medical decision support based on routinely collected observational data.

To support the application scenarios where high-resolution (HR) images are urgently needed, various single image super-resolution (SISR) algorithms are developed. However, SISR is an ill-posed inverse problem, which may bring artifacts like texture shift, blur, etc. to the reconstructed images, thus it is necessary to evaluate the quality of super-resolution images (SRIs). Note that most existing image quality assessment (IQA) methods were developed for synthetically distorted images, which may not work for SRIs since their distortions are more diverse and complicated. Therefore, in this paper, we propose a no-reference deep-learning image quality assessment method based on frequency maps because the artifacts caused by SISR algorithms are quite sensitive to frequency information. Specifically, we first obtain the high-frequency map (HM) and low-frequency map (LM) of SRI by using Sobel operator and piecewise smooth image approximation. Then, a two-stream network is employed to extract the quality-aware features of both frequency maps. Finally, the features are regressed into a single quality value using fully connected layers. The experimental results show that our method outperforms all compared IQA models on the selected three super-resolution quality assessment (SRQA) databases.

Quantitative Ultrasound (QUS) provides important information about the tissue properties. QUS parametric image can be formed by dividing the envelope data into small overlapping patches and computing different speckle statistics such as parameters of the Nakagami and Homodyned K-distributions (HK-distribution). The calculated QUS parametric images can be erroneous since only a few independent samples are available inside the patches. Another challenge is that the envelope samples inside the patch are assumed to come from the same distribution, an assumption that is often violated given that the tissue is usually not homogenous. In this paper, we propose a method based on Convolutional Neural Networks (CNN) to estimate QUS parametric images without patching. We construct a large dataset sampled from the HK-distribution, having regions with random shapes and QUS parameter values. We then use a well-known network to estimate QUS parameters in a multi-task learning fashion. Our results confirm that the proposed method is able to reduce errors and improve border definition in QUS parametric images.

Recent years have witnessed the rapid development of image storage and transmission systems, in which image compression plays an important role. Generally speaking, image compression algorithms are developed to ensure good visual quality at limited bit rates. However, due to the different compression optimization methods, the compressed images may have different levels of quality, which needs to be evaluated quantificationally. Nowadays, the mainstream full-reference (FR) metrics are effective to predict the quality of compressed images at coarse-grained levels (the bit rates differences of compressed images are obvious), however, they may perform poorly for fine-grained compressed images whose bit rates differences are quite subtle. Therefore, to better improve the Quality of Experience (QoE) and provide useful guidance for compression algorithms, we propose a full-reference image quality assessment (FR-IQA) method for compressed images of fine-grained levels. Specifically, the reference images and compressed images are first converted to $YCbCr$ color space. The gradient features are extracted from regions that are sensitive to compression artifacts. Then we employ the Log-Gabor transformation to further analyze the texture difference. Finally, the obtained features are fused into a quality score. The proposed method is validated on the fine-grained compression image quality assessment (FGIQA) database, which is especially constructed for assessing the quality of compressed images with close bit rates. The experimental results show that our metric outperforms mainstream FR-IQA metrics on the FGIQA database. We also test our method on other commonly used compression IQA databases and the results show that our method obtains competitive performance on the coarse-grained compression IQA databases as well.

Modern web services routinely provide REST APIs for clients to access their functionality. These APIs present unique challenges and opportunities for automated testing, driving the recent development of many techniques and tools that generate test cases for API endpoints using various strategies. Understanding how these techniques compare to one another is difficult, as they have been evaluated on different benchmarks and using different metrics. To fill this gap, we performed an empirical study aimed to understand the landscape in automated testing of REST APIs and guide future research in this area. We first identified, through a systematic selection process, a set of 10 state-of-the-art REST API testing tools that included tools developed by both researchers and practitioners. We then applied these tools to a benchmark of 20 real-world open-source RESTful services and analyzed their performance in terms of code coverage achieved and unique failures triggered. This analysis allowed us to identify strengths, weaknesses, and limitations of the tools considered and of their underlying strategies, as well as implications of our findings for future research in this area.

We present a video generation model that accurately reproduces object motion, changes in camera viewpoint, and new content that arises over time. Existing video generation methods often fail to produce new content as a function of time while maintaining consistencies expected in real environments, such as plausible dynamics and object persistence. A common failure case is for content to never change due to over-reliance on inductive biases to provide temporal consistency, such as a single latent code that dictates content for the entire video. On the other extreme, without long-term consistency, generated videos may morph unrealistically between different scenes. To address these limitations, we prioritize the time axis by redesigning the temporal latent representation and learning long-term consistency from data by training on longer videos. To this end, we leverage a two-phase training strategy, where we separately train using longer videos at a low resolution and shorter videos at a high resolution. To evaluate the capabilities of our model, we introduce two new benchmark datasets with explicit focus on long-term temporal dynamics.

Annika Reinke,Minu D. Tizabi,Carole H. Sudre,Matthias Eisenmann,Tim R?dsch,Michael Baumgartner,Laura Acion,Michela Antonelli,Tal Arbel,Spyridon Bakas,Peter Bankhead,Arriel Benis,M. Jorge Cardoso,Veronika Cheplygina,Evangelia Christodoulou,Beth Cimini,Gary S. Collins,Keyvan Farahani,Bram van Ginneken,Ben Glocker,Patrick Godau,Fred Hamprecht,Daniel A. Hashimoto,Doreen Heckmann-N?tzel,Michael M. Hoffmann,Merel Huisman,Fabian Isensee,Pierre Jannin,Charles E. Kahn,Alexandros Karargyris,Alan Karthikesalingam,Bernhard Kainz,Emre Kavur,Hannes Kenngott,Jens Kleesiek,Thijs Kooi,Michal Kozubek,Anna Kreshuk,Tahsin Kurc,Bennett A. Landman,Geert Litjens,Amin Madani,Klaus Maier-Hein,Anne L. Martel,Peter Mattson,Erik Meijering,Bjoern Menze,David Moher,Karel G. M. Moons,Henning Müller,Brennan Nichyporuk,Felix Nickel,Jens Petersen,Gorkem Polat,Nasir Rajpoot,Mauricio Reyes,Nicola Rieke,Michael Riegler,Hassan Rivaz,Julio Saez-Rodriguez,Clarisa Sanchez Gutierrez,Julien Schroeter,Anindo Saha,Shravya Shetty,Maarten van Smeden,Bram Stieltjes,Ronald M. Summers,Abdel A. Taha,Sotirios A. Tsaftaris,Ben Van Calster,Ga?l Varoquaux,Manuel Wiesenfarth,Ziv R. Yaniv,Annette Kopp-Schneider,Paul J?ger,Lena Maier-Hein

While the importance of automatic image analysis is continuously increasing, recent meta-research revealed major flaws with respect to algorithm validation. Performance metrics are particularly key for meaningful, objective, and transparent performance assessment and validation of the used automatic algorithms, but relatively little attention has been given to the practical pitfalls when using specific metrics for a given image analysis task. These are typically related to (1) the disregard of inherent metric properties, such as the behaviour in the presence of class imbalance or small target structures, (2) the disregard of inherent data set properties, such as the non-independence of the test cases, and (3) the disregard of the actual biomedical domain interest that the metrics should reflect. This living dynamically document has the purpose to illustrate important limitations of performance metrics commonly applied in the field of image analysis. In this context, it focuses on biomedical image analysis problems that can be phrased as image-level classification, semantic segmentation, instance segmentation, or object detection task. The current version is based on a Delphi process on metrics conducted by an international consortium of image analysis experts from more than 60 institutions worldwide.

We consider the off-policy evaluation problem of reinforcement learning using deep neural networks. We analyze the deep fitted Q-evaluation method for estimating the expected cumulative reward of a target policy, when the data are generated from an unknown behavior policy. We show that, by choosing network size appropriately, one can leverage the low-dimensional manifold structure in the Markov decision process and obtain a sample-efficient estimator without suffering from the curse of high representation dimensionality. Specifically, we establish a sharp error bound for the fitted Q-evaluation that depends on the intrinsic low dimension, the smoothness of the state-action space, and a function class-restricted $\chi^2$-divergence. It is noteworthy that the restricted $\chi^2$-divergence measures the behavior and target policies' {\it mismatch in the function space}, which can be small even if the two policies are not close to each other in their tabular forms. Numerical experiments are provided to support our theoretical analysis.

It is a common paradigm in object detection frameworks to treat all samples equally and target at maximizing the performance on average. In this work, we revisit this paradigm through a careful study on how different samples contribute to the overall performance measured in terms of mAP. Our study suggests that the samples in each mini-batch are neither independent nor equally important, and therefore a better classifier on average does not necessarily mean higher mAP. Motivated by this study, we propose the notion of Prime Samples, those that play a key role in driving the detection performance. We further develop a simple yet effective sampling and learning strategy called PrIme Sample Attention (PISA) that directs the focus of the training process towards such samples. Our experiments demonstrate that it is often more effective to focus on prime samples than hard samples when training a detector. Particularly, On the MSCOCO dataset, PISA outperforms the random sampling baseline and hard mining schemes, e.g. OHEM and Focal Loss, consistently by more than 1% on both single-stage and two-stage detectors, with a strong backbone ResNeXt-101.

While it is nearly effortless for humans to quickly assess the perceptual similarity between two images, the underlying processes are thought to be quite complex. Despite this, the most widely used perceptual metrics today, such as PSNR and SSIM, are simple, shallow functions, and fail to account for many nuances of human perception. Recently, the deep learning community has found that features of the VGG network trained on the ImageNet classification task has been remarkably useful as a training loss for image synthesis. But how perceptual are these so-called "perceptual losses"? What elements are critical for their success? To answer these questions, we introduce a new Full Reference Image Quality Assessment (FR-IQA) dataset of perceptual human judgments, orders of magnitude larger than previous datasets. We systematically evaluate deep features across different architectures and tasks and compare them with classic metrics. We find that deep features outperform all previous metrics by huge margins. More surprisingly, this result is not restricted to ImageNet-trained VGG features, but holds across different deep architectures and levels of supervision (supervised, self-supervised, or even unsupervised). Our results suggest that perceptual similarity is an emergent property shared across deep visual representations.

北京阿比特科技有限公司