亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

We present Bayesian techniques for solving inverse problems which involve mean-square convergent random approximations of the forward map. Noisy approximations of the forward map arise in several fields, such as multiscale problems and probabilistic numerical methods. In these fields, a random approximation can enhance the quality or the efficiency of the inference procedure, but entails additional theoretical and computational difficulties due to the randomness of the forward map. A standard technique to address this issue is to combine Monte Carlo averaging with Markov chain Monte Carlo samplers, as for example in the pseudo-marginal Metropolis--Hastings methods. In this paper, we consider mean-square convergent random approximations, and quantify how Monte Carlo errors propagate from the forward map to the solution of the inverse problems. Moreover, we review and describe simple techniques to solve such inverse problems, and compare performances with a series of numerical experiments.

相關內容

Recent advances in quantized compressed sensing and high-dimensional estimation have shown that signal recovery is even feasible under strong non-linear distortions in the observation process. An important characteristic of associated guarantees is uniformity, i.e., recovery succeeds for an entire class of structured signals with a fixed measurement ensemble. However, despite significant results in various special cases, a general understanding of uniform recovery from non-linear observations is still missing. This paper develops a unified approach to this problem under the assumption of i.i.d. sub-Gaussian measurement vectors. Our main result shows that a simple least-squares estimator with any convex constraint can serve as a universal recovery strategy, which is outlier robust and does not require explicit knowledge of the underlying non-linearity. Based on empirical process theory, a key technical novelty is an approximative increment condition that can be implemented for all common types of non-linear models. This flexibility allows us to apply our approach to a variety of problems in non-linear compressed sensing and high-dimensional statistics, leading to several new and improved guarantees. Each of these applications is accompanied by a conceptually simple and systematic proof, which does not rely on any deeper properties of the observation model. On the other hand, known local stability properties can be incorporated into our framework in a plug-and-play manner, thereby implying near-optimal error bounds.

Logistic Bandits have recently undergone careful scrutiny by virtue of their combined theoretical and practical relevance. This research effort delivered statistically efficient algorithms, improving the regret of previous strategies by exponentially large factors. Such algorithms are however strikingly costly as they require $\Omega(t)$ operations at each round. On the other hand, a different line of research focused on computational efficiency ($\mathcal{O}(1)$ per-round cost), but at the cost of letting go of the aforementioned exponential improvements. Obtaining the best of both world is unfortunately not a matter of marrying both approaches. Instead we introduce a new learning procedure for Logistic Bandits. It yields confidence sets which sufficient statistics can be easily maintained online without sacrificing statistical tightness. Combined with efficient planning mechanisms we design fast algorithms which regret performance still match the problem-dependent lower-bound of Abeille et al. (2021). To the best of our knowledge, those are the first Logistic Bandit algorithms that simultaneously enjoy statistical and computational efficiency.

Optimal experimental design (OED) plays an important role in the problem of identifying uncertainty with limited experimental data. In many applications, we seek to minimize the uncertainty of a predicted quantity of interest (QoI) based on the solution of the inverse problem, rather than the inversion model parameter itself. In these scenarios, we develop an efficient method for goal-oriented optimal experimental design (GOOED) for large-scale Bayesian linear inverse problem that finds sensor locations to maximize the expected information gain (EIG) for a predicted QoI. By deriving a new formula to compute the EIG, exploiting low-rank structures of two appropriate operators, we are able to employ an online-offline decomposition scheme and a swapping greedy algorithm to maximize the EIG at a cost measured in model solutions that is independent of the problem dimensions. We provide detailed error analysis of the approximated EIG, and demonstrate the efficiency, accuracy, and both data- and parameter-dimension independence of the proposed algorithm for a contaminant transport inverse problem with infinite-dimensional parameter field.

This is an up-to-date introduction to, and overview of, marginal likelihood computation for model selection and hypothesis testing. Computing normalizing constants of probability models (or ratio of constants) is a fundamental issue in many applications in statistics, applied mathematics, signal processing and machine learning. This article provides a comprehensive study of the state-of-the-art of the topic. We highlight limitations, benefits, connections and differences among the different techniques. Problems and possible solutions with the use of improper priors are also described. Some of the most relevant methodologies are compared through theoretical comparisons and numerical experiments.

We consider the problem of domain approximation in finite element methods for Maxwell equations on curved domains, i.e., when affine or polynomial meshes fail to exactly cover the domain of interest. In such cases, one is forced to approximate the domain by a sequence of polyhedral domains arising from inexact meshes. We deduce conditions on the quality of these approximations that ensure rates of error convergence between discrete solutions -- in the approximate domains -- to the continuous one in the original domain.

This dissertation studies a fundamental open challenge in deep learning theory: why do deep networks generalize well even while being overparameterized, unregularized and fitting the training data to zero error? In the first part of the thesis, we will empirically study how training deep networks via stochastic gradient descent implicitly controls the networks' capacity. Subsequently, to show how this leads to better generalization, we will derive {\em data-dependent} {\em uniform-convergence-based} generalization bounds with improved dependencies on the parameter count. Uniform convergence has in fact been the most widely used tool in deep learning literature, thanks to its simplicity and generality. Given its popularity, in this thesis, we will also take a step back to identify the fundamental limits of uniform convergence as a tool to explain generalization. In particular, we will show that in some example overparameterized settings, {\em any} uniform convergence bound will provide only a vacuous generalization bound. With this realization in mind, in the last part of the thesis, we will change course and introduce an {\em empirical} technique to estimate generalization using unlabeled data. Our technique does not rely on any notion of uniform-convergece-based complexity and is remarkably precise. We will theoretically show why our technique enjoys such precision. We will conclude by discussing how future work could explore novel ways to incorporate distributional assumptions in generalization bounds (such as in the form of unlabeled data) and explore other tools to derive bounds, perhaps by modifying uniform convergence or by developing completely new tools altogether.

Stochastic gradient Markov chain Monte Carlo (SGMCMC) has become a popular method for scalable Bayesian inference. These methods are based on sampling a discrete-time approximation to a continuous time process, such as the Langevin diffusion. When applied to distributions defined on a constrained space, such as the simplex, the time-discretisation error can dominate when we are near the boundary of the space. We demonstrate that while current SGMCMC methods for the simplex perform well in certain cases, they struggle with sparse simplex spaces; when many of the components are close to zero. However, most popular large-scale applications of Bayesian inference on simplex spaces, such as network or topic models, are sparse. We argue that this poor performance is due to the biases of SGMCMC caused by the discretization error. To get around this, we propose the stochastic CIR process, which removes all discretization error and we prove that samples from the stochastic CIR process are asymptotically unbiased. Use of the stochastic CIR process within a SGMCMC algorithm is shown to give substantially better performance for a topic model and a Dirichlet process mixture model than existing SGMCMC approaches.

We present an end-to-end framework for solving the Vehicle Routing Problem (VRP) using reinforcement learning. In this approach, we train a single model that finds near-optimal solutions for problem instances sampled from a given distribution, only by observing the reward signals and following feasibility rules. Our model represents a parameterized stochastic policy, and by applying a policy gradient algorithm to optimize its parameters, the trained model produces the solution as a sequence of consecutive actions in real time, without the need to re-train for every new problem instance. On capacitated VRP, our approach outperforms classical heuristics and Google's OR-Tools on medium-sized instances in solution quality with comparable computation time (after training). We demonstrate how our approach can handle problems with split delivery and explore the effect of such deliveries on the solution quality. Our proposed framework can be applied to other variants of the VRP such as the stochastic VRP, and has the potential to be applied more generally to combinatorial optimization problems.

We consider the task of learning the parameters of a {\em single} component of a mixture model, for the case when we are given {\em side information} about that component, we call this the "search problem" in mixture models. We would like to solve this with computational and sample complexity lower than solving the overall original problem, where one learns parameters of all components. Our main contributions are the development of a simple but general model for the notion of side information, and a corresponding simple matrix-based algorithm for solving the search problem in this general setting. We then specialize this model and algorithm to four common scenarios: Gaussian mixture models, LDA topic models, subspace clustering, and mixed linear regression. For each one of these we show that if (and only if) the side information is informative, we obtain parameter estimates with greater accuracy, and also improved computation complexity than existing moment based mixture model algorithms (e.g. tensor methods). We also illustrate several natural ways one can obtain such side information, for specific problem instances. Our experiments on real data sets (NY Times, Yelp, BSDS500) further demonstrate the practicality of our algorithms showing significant improvement in runtime and accuracy.

This paper describes a suite of algorithms for constructing low-rank approximations of an input matrix from a random linear image of the matrix, called a sketch. These methods can preserve structural properties of the input matrix, such as positive-semidefiniteness, and they can produce approximations with a user-specified rank. The algorithms are simple, accurate, numerically stable, and provably correct. Moreover, each method is accompanied by an informative error bound that allows users to select parameters a priori to achieve a given approximation quality. These claims are supported by numerical experiments with real and synthetic data.

北京阿比特科技有限公司