亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

We introduce Multi-view Ancestral Sampling (MAS), a method for 3D motion generation, using 2D diffusion models that were trained on motions obtained from in-the-wild videos. As such, MAS opens opportunities to exciting and diverse fields of motion previously under-explored as 3D data is scarce and hard to collect. MAS works by simultaneously denoising multiple 2D motion sequences representing different views of the same 3D motion. It ensures consistency across all views at each diffusion step by combining the individual generations into a unified 3D sequence, and projecting it back to the original views. We demonstrate MAS on 2D pose data acquired from videos depicting professional basketball maneuvers, rhythmic gymnastic performances featuring a ball apparatus, and horse races. In each of these domains, 3D motion capture is arduous, and yet, MAS generates diverse and realistic 3D sequences. Unlike the Score Distillation approach, which optimizes each sample by repeatedly applying small fixes, our method uses a sampling process that was constructed for the diffusion framework. As we demonstrate, MAS avoids common issues such as out-of-domain sampling and mode-collapse. //guytevet.github.io/mas-page/

相關內容

3D是(shi)英(ying)文“Three Dimensions”的簡稱,中(zhong)文是(shi)指三(san)(san)維、三(san)(san)個(ge)維度(du)、三(san)(san)個(ge)坐標(biao),即有長、有寬(kuan)、有高,換句(ju)話說,就是(shi)立體(ti)的,是(shi)相(xiang)對于(yu)只有長和寬(kuan)的平面(2D)而(er)言(yan)。

This work presents a dynamic vocabulary adaptation strategy, MEDVOC, for fine-tuning pre-trained language models (PLMs) like BertSumAbs, BART, and PEGASUS for improved medical text summarization. In contrast to existing domain adaptation approaches in summarization, MEDVOC treats vocabulary as an optimizable parameter and optimizes the PLM vocabulary based on fragment score conditioned only on the downstream task's reference summaries. Unlike previous works on vocabulary adaptation (limited only to classification tasks), optimizing vocabulary based on summarization tasks requires an extremely costly intermediate fine-tuning step on large summarization datasets. To that end, our novel fragment score-based hyperparameter search very significantly reduces this fine-tuning time -- from 450 days to less than 2 days on average. Furthermore, while previous works on vocabulary adaptation are often primarily tied to single PLMs, MEDVOC is designed to be deployable across multiple PLMs (with varying model vocabulary sizes, pre-training objectives, and model sizes) -- bridging the limited vocabulary overlap between the biomedical literature domain and PLMs. MEDVOC outperforms baselines by 15.74% in terms of Rouge-L in zero-shot setting and shows gains of 17.29% in high Out-Of-Vocabulary (OOV) concentrations. Our human evaluation shows MEDVOC generates more faithful medical summaries (88% compared to 59% in baselines). We make the codebase publicly available at //github.com/gb-kgp/MEDVOC.

Mixture-of-experts (MoE) models facilitate efficient scaling; however, training the router network introduces the challenge of optimizing a non-differentiable, discrete objective. Recently, a fully-differentiable MoE architecture, SMEAR, was proposed (Muqeeth et al., 2023), which softly merges experts in the parameter space; nevertheless, its effectiveness was only demonstrated in downstream fine-tuning on classification tasks. In this paper, we present Lory, the first approach that scales such architectures to autoregressive language model pre-training. Lory introduces two key techniques: (1) a causal segment routing strategy that achieves high efficiency for expert merging operations while preserving the autoregressive nature of language models; (2) a similarity-based data batching method that encourages expert specialization by grouping similar documents in training instances. We pre-train a series of Lory models on 150B tokens from scratch, with up to 32 experts and 30B (1.5B active) parameters. Experimental results show significant performance gains over parameter-matched dense models on both perplexity (+13.9%) and a variety of downstream tasks (+1.5%-11.1%). Despite segment-level routing, Lory models achieve competitive performance compared to state-of-the-art MoE models with token-level routing. We further demonstrate that the trained experts in Lory capture domain-level specialization without supervision. Our work highlights the potential of fully-differentiable MoE architectures for language model pre-training and advocates future research in this area.

We present X-SLAM, a real-time dense differentiable SLAM system that leverages the complex-step finite difference (CSFD) method for efficient calculation of numerical derivatives, bypassing the need for a large-scale computational graph. The key to our approach is treating the SLAM process as a differentiable function, enabling the calculation of the derivatives of important SLAM parameters through Taylor series expansion within the complex domain. Our system allows for the real-time calculation of not just the gradient, but also higher-order differentiation. This facilitates the use of high-order optimizers to achieve better accuracy and faster convergence. Building on X-SLAM, we implemented end-to-end optimization frameworks for two important tasks: camera relocalization in wide outdoor scenes and active robotic scanning in complex indoor environments. Comprehensive evaluations on public benchmarks and intricate real scenes underscore the improvements in the accuracy of camera relocalization and the efficiency of robotic navigation achieved through our task-aware optimization. The code and data are available at //gapszju.github.io/X-SLAM.

The continuous evolution of pre-trained speech models has greatly advanced Speech Emotion Recognition (SER). However, there is still potential for enhancement in the performance of these methods. In this paper, we present GMP-ATL (Gender-augmented Multi-scale Pseudo-label Adaptive Transfer Learning), a novel HuBERT-based adaptive transfer learning framework for SER. Specifically, GMP-ATL initially employs the pre-trained HuBERT, implementing multi-task learning and multi-scale k-means clustering to acquire frame-level gender-augmented multi-scale pseudo-labels. Then, to fully leverage both obtained frame-level and utterance-level emotion labels, we incorporate model retraining and fine-tuning methods to further optimize GMP-ATL. Experiments on IEMOCAP show that our GMP-ATL achieves superior recognition performance, with a WAR of 80.0\% and a UAR of 82.0\%, surpassing state-of-the-art unimodal SER methods, while also yielding comparable results with multimodal SER approaches.

Because of the recent trends in Deep Neural Networks (DNN) models being memory-bound, inter-operator pipelining for DNN accelerators is emerging as a promising optimization. Inter-operator pipelining reduces costly on-chip global memory and off-chip memory accesses by forwarding the output of a layer as the input of the next layer within the compute array, which is proven to be an effective optimization by previous works. However, the design space of inter-operator pipelining is huge, and the space is not yet fully explored. In particular, identifying the right depth and granularity of pipelining (or no pipelining at all) is significantly dependent on the layer shapes and data volumes of weights and activations, and these are different even within a domain. Moreover, works divide the substrate into large chunks and map one layer onto each chunk, which requires communicating halfway through or through the global buffer. However, for fine-grained inter-operation pipelining, placing the corresponding consumer of the next layer tile close to the producer tile of the current layer is a better way to exploit fine-grained spatial reuse. In order to support variable number of layers (ie the right depth) and support multiple spatial organizations of layers (in accordance with the pipelining granularity) on the substrate, we propose PipeOrgan, a new class of spatial data organization strategy for energy efficient and congestion-free communication between the PEs for various pipeline depth and granularity. PipeOrgan takes advantage of flexible spatial organization and can allocate layers to PEs based on the granularity of pipelining. We also propose changes to the conventional mesh topology to improve the performance of coarse-grained allocation. PipeOrgan achieves 1.95x performance improvement over the state-of-the-art pipelined dataflow on XR-bench workloads.

With the urgent demand for generalized deep models, many pre-trained big models are proposed, such as BERT, ViT, GPT, etc. Inspired by the success of these models in single domains (like computer vision and natural language processing), the multi-modal pre-trained big models have also drawn more and more attention in recent years. In this work, we give a comprehensive survey of these models and hope this paper could provide new insights and helps fresh researchers to track the most cutting-edge works. Specifically, we firstly introduce the background of multi-modal pre-training by reviewing the conventional deep learning, pre-training works in natural language process, computer vision, and speech. Then, we introduce the task definition, key challenges, and advantages of multi-modal pre-training models (MM-PTMs), and discuss the MM-PTMs with a focus on data, objectives, network architectures, and knowledge enhanced pre-training. After that, we introduce the downstream tasks used for the validation of large-scale MM-PTMs, including generative, classification, and regression tasks. We also give visualization and analysis of the model parameters and results on representative downstream tasks. Finally, we point out possible research directions for this topic that may benefit future works. In addition, we maintain a continuously updated paper list for large-scale pre-trained multi-modal big models: //github.com/wangxiao5791509/MultiModal_BigModels_Survey

In the past few years, the emergence of pre-training models has brought uni-modal fields such as computer vision (CV) and natural language processing (NLP) to a new era. Substantial works have shown they are beneficial for downstream uni-modal tasks and avoid training a new model from scratch. So can such pre-trained models be applied to multi-modal tasks? Researchers have explored this problem and made significant progress. This paper surveys recent advances and new frontiers in vision-language pre-training (VLP), including image-text and video-text pre-training. To give readers a better overall grasp of VLP, we first review its recent advances from five aspects: feature extraction, model architecture, pre-training objectives, pre-training datasets, and downstream tasks. Then, we summarize the specific VLP models in detail. Finally, we discuss the new frontiers in VLP. To the best of our knowledge, this is the first survey on VLP. We hope that this survey can shed light on future research in the VLP field.

Object detection with transformers (DETR) reaches competitive performance with Faster R-CNN via a transformer encoder-decoder architecture. Inspired by the great success of pre-training transformers in natural language processing, we propose a pretext task named random query patch detection to unsupervisedly pre-train DETR (UP-DETR) for object detection. Specifically, we randomly crop patches from the given image and then feed them as queries to the decoder. The model is pre-trained to detect these query patches from the original image. During the pre-training, we address two critical issues: multi-task learning and multi-query localization. (1) To trade-off multi-task learning of classification and localization in the pretext task, we freeze the CNN backbone and propose a patch feature reconstruction branch which is jointly optimized with patch detection. (2) To perform multi-query localization, we introduce UP-DETR from single-query patch and extend it to multi-query patches with object query shuffle and attention mask. In our experiments, UP-DETR significantly boosts the performance of DETR with faster convergence and higher precision on PASCAL VOC and COCO datasets. The code will be available soon.

Recently pre-trained language representation models such as BERT have shown great success when fine-tuned on downstream tasks including information retrieval (IR). However, pre-training objectives tailored for ad-hoc retrieval have not been well explored. In this paper, we propose Pre-training with Representative wOrds Prediction (PROP) for ad-hoc retrieval. PROP is inspired by the classical statistical language model for IR, specifically the query likelihood model, which assumes that the query is generated as the piece of text representative of the "ideal" document. Based on this idea, we construct the representative words prediction (ROP) task for pre-training. Given an input document, we sample a pair of word sets according to the document language model, where the set with higher likelihood is deemed as more representative of the document. We then pre-train the Transformer model to predict the pairwise preference between the two word sets, jointly with the Masked Language Model (MLM) objective. By further fine-tuning on a variety of representative downstream ad-hoc retrieval tasks, PROP achieves significant improvements over baselines without pre-training or with other pre-training methods. We also show that PROP can achieve exciting performance under both the zero- and low-resource IR settings. The code and pre-trained models are available at //github.com/Albert-Ma/PROP.

Recent work pre-training Transformers with self-supervised objectives on large text corpora has shown great success when fine-tuned on downstream NLP tasks including text summarization. However, pre-training objectives tailored for abstractive text summarization have not been explored. Furthermore there is a lack of systematic evaluation across diverse domains. In this work, we propose pre-training large Transformer-based encoder-decoder models on massive text corpora with a new self-supervised objective. In PEGASUS, important sentences are removed/masked from an input document and are generated together as one output sequence from the remaining sentences, similar to an extractive summary. We evaluated our best PEGASUS model on 12 downstream summarization tasks spanning news, science, stories, instructions, emails, patents, and legislative bills. Experiments demonstrate it achieves state-of-the-art performance on all 12 downstream datasets measured by ROUGE scores. Our model also shows surprising performance on low-resource summarization, surpassing previous state-of-the-art results on 6 datasets with only 1000 examples. Finally we validated our results using human evaluation and show that our model summaries achieve human performance on multiple datasets.

北京阿比特科技有限公司