亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Entity alignment (EA) refers to the task of linking entities in different knowledge graphs (KGs). Existing EA methods rely heavily on structural isomorphism. However, in real-world KGs, aligned entities usually have non-isomorphic neighborhood structures, which paralyses the application of these structure-dependent methods. In this paper, we investigate and tackle the problem of entity alignment between heterogeneous KGs. First, we propose two new benchmarks to closely simulate real-world EA scenarios of heterogeneity. Then we conduct extensive experiments to evaluate the performance of representative EA methods on the new benchmarks. Finally, we propose a simple and effective entity alignment framework called Attr-Int, in which innovative attribute information interaction methods can be seamlessly integrated with any embedding encoder for entity alignment, improving the performance of existing entity alignment techniques. Experiments demonstrate that our framework outperforms the state-of-the-art approaches on two new benchmarks.

相關內容

Continual Learning (CL) involves adapting the prior Deep Neural Network (DNN) knowledge to new tasks, without forgetting the old ones. However, modern CL techniques focus on provisioning memory capabilities to existing DNN models rather than designing new ones that are able to adapt according to the task at hand. This paper presents the novel Feedback Continual Learning Vision Transformer (FCL-ViT) that uses a feedback mechanism to generate real-time dynamic attention features tailored to the current task. The FCL-ViT operates in two Phases. In phase 1, the generic image features are produced and determine where the Transformer should attend on the current image. In phase 2, task-specific image features are generated that leverage dynamic attention. To this end, Tunable self-Attention Blocks (TABs) and Task Specific Blocks (TSBs) are introduced that operate in both phases and are responsible for tuning the TABs attention, respectively. The FCL-ViT surpasses state-of-the-art performance on Continual Learning compared to benchmark methods, while retaining a small number of trainable DNN parameters.

Recent advancements in computational pathology have produced patch-level Multi-modal Large Language Models (MLLMs), but these models are limited by their inability to analyze whole slide images (WSIs) comprehensively and their tendency to bypass crucial morphological features that pathologists rely on for diagnosis. To address these challenges, we first introduce WSI-Bench, a large-scale morphology-aware benchmark containing 180k VQA pairs from 9,850 WSIs across 30 cancer types, designed to evaluate MLLMs' understanding of morphological characteristics crucial for accurate diagnosis. Building upon this benchmark, we present WSI-LLaVA, a novel framework for gigapixel WSI understanding that employs a three-stage training approach: WSI-text alignment, feature space alignment, and task-specific instruction tuning. To better assess model performance in pathological contexts, we develop two specialized WSI metrics: WSI-Precision and WSI-Relevance. Experimental results demonstrate that WSI-LLaVA outperforms existing models across all capability dimensions, with a significant improvement in morphological analysis, establishing a clear correlation between morphological understanding and diagnostic accuracy.

Multimodal Sentiment Analysis (MSA) leverages multiple data modals to analyze human sentiment. Existing MSA models generally employ cutting-edge multimodal fusion and representation learning-based methods to promote MSA capability. However, there are two key challenges: (i) in existing multimodal fusion methods, the decoupling of modal combinations and tremendous parameter redundancy, lead to insufficient fusion performance and efficiency; (ii) a challenging trade-off exists between representation capability and computational overhead in unimodal feature extractors and encoders. Our proposed GSIFN incorporates two main components to solve these problems: (i) a graph-structured and interlaced-masked multimodal Transformer. It adopts the Interlaced Mask mechanism to construct robust multimodal graph embedding, achieve all-modal-in-one Transformer-based fusion, and greatly reduce the computational overhead; (ii) a self-supervised learning framework with low computational overhead and high performance, which utilizes a parallelized LSTM with matrix memory to enhance non-verbal modal features for unimodal label generation. Evaluated on the MSA datasets CMU-MOSI, CMU-MOSEI, and CH-SIMS, GSIFN demonstrates superior performance with significantly lower computational overhead compared with previous state-of-the-art models.

We introduce HackSynth, a novel Large Language Model (LLM)-based agent capable of autonomous penetration testing. HackSynth's dual-module architecture includes a Planner and a Summarizer, which enable it to generate commands and process feedback iteratively. To benchmark HackSynth, we propose two new Capture The Flag (CTF)-based benchmark sets utilizing the popular platforms PicoCTF and OverTheWire. These benchmarks include two hundred challenges across diverse domains and difficulties, providing a standardized framework for evaluating LLM-based penetration testing agents. Based on these benchmarks, extensive experiments are presented, analyzing the core parameters of HackSynth, including creativity (temperature and top-p) and token utilization. Multiple open source and proprietary LLMs were used to measure the agent's capabilities. The experiments show that the agent performed best with the GPT-4o model, better than what the GPT-4o's system card suggests. We also discuss the safety and predictability of HackSynth's actions. Our findings indicate the potential of LLM-based agents in advancing autonomous penetration testing and the importance of robust safeguards. HackSynth and the benchmarks are publicly available to foster research on autonomous cybersecurity solutions.

Sequential DeepFake detection is an emerging task that predicts the manipulation sequence in order. Existing methods typically formulate it as an image-to-sequence problem, employing conventional Transformer architectures. However, these methods lack dedicated design and consequently result in limited performance. As such, this paper describes a new Transformer design, called TSOM, by exploring three perspectives: Texture, Shape, and Order of Manipulations. Our method features four major improvements: \ding{182} we describe a new texture-aware branch that effectively captures subtle manipulation traces with a Diversiform Pixel Difference Attention module. \ding{183} Then we introduce a Multi-source Cross-attention module to seek deep correlations among spatial and sequential features, enabling effective modeling of complex manipulation traces. \ding{184} To further enhance the cross-attention, we describe a Shape-guided Gaussian mapping strategy, providing initial priors of the manipulation shape. \ding{185} Finally, observing that the subsequent manipulation in a sequence may influence traces left in the preceding one, we intriguingly invert the prediction order from forward to backward, leading to notable gains as expected. Extensive experimental results demonstrate that our method outperforms others by a large margin, highlighting the superiority of our method.

We propose MM-Vet, an evaluation benchmark that examines large multimodal models (LMMs) on complicated multimodal tasks. Recent LMMs have shown various intriguing abilities, such as solving math problems written on the blackboard, reasoning about events and celebrities in news images, and explaining visual jokes. Rapid model advancements pose challenges to evaluation benchmark development. Problems include: (1) How to systematically structure and evaluate the complicated multimodal tasks; (2) How to design evaluation metrics that work well across question and answer types; and (3) How to give model insights beyond a simple performance ranking. To this end, we present MM-Vet, designed based on the insight that the intriguing ability to solve complicated tasks is often achieved by a generalist model being able to integrate different core vision-language (VL) capabilities. MM-Vet defines 6 core VL capabilities and examines the 16 integrations of interest derived from the capability combination. For evaluation metrics, we propose an LLM-based evaluator for open-ended outputs. The evaluator enables the evaluation across different question types and answer styles, resulting in a unified scoring metric. We evaluate representative LMMs on MM-Vet, providing insights into the capabilities of different LMM system paradigms and models.

Multimodal Emotion Recognition in Conversations (MERC) aims to classify utterance emotions using textual, auditory, and visual modal features. Most existing MERC methods assume each utterance has complete modalities, overlooking the common issue of incomplete modalities in real-world scenarios. Recently, graph neural networks (GNNs) have achieved notable results in Incomplete Multimodal Emotion Recognition in Conversations (IMERC). However, traditional GNNs focus on binary relationships between nodes, limiting their ability to capture more complex, higher-order information. Moreover, repeated message passing can cause over-smoothing, reducing their capacity to preserve essential high-frequency details. To address these issues, we propose a Spectral Domain Reconstruction Graph Neural Network (SDR-GNN) for incomplete multimodal learning in conversational emotion recognition. SDR-GNN constructs an utterance semantic interaction graph using a sliding window based on both speaker and context relationships to model emotional dependencies. To capture higher-order and high-frequency information, SDR-GNN utilizes weighted relationship aggregation, ensuring consistent semantic feature extraction across utterances. Additionally, it performs multi-frequency aggregation in the spectral domain, enabling efficient recovery of incomplete modalities by extracting both high- and low-frequency information. Finally, multi-head attention is applied to fuse and optimize features for emotion recognition. Extensive experiments on various real-world datasets demonstrate that our approach is effective in incomplete multimodal learning and outperforms current state-of-the-art methods.

Evolving from massive multiple-input multiple-output (MIMO) in current 5G communications, ultra-massive MIMO emerges as a seminal technology for fulfilling more stringent requirements of future 6G communications. However, widely-utilized phased arrays relying on active components make the implementation of ultra-massive MIMO in practice increasingly prohibitive from both cost and power consumption perspectives. In contrast, the development of reconfigurable holographic surface (RHS) provides a new paradigm to solve the above issue without the need of costly hardware components. By leveraging the holographic principle, the RHS serves as an ultra-thin and lightweight surface antenna integrated with the transceiver, which is a promising alternative to phased arrays for realizing ultra-massive MIMO. In this paper, we provide a comprehensive overview of the RHS, especially the RHS-aided communication and sensing. We first describe the basic concepts of RHS, and introduce its working principle and unique practical constraints. Moreover, we show how to utilize the RHS to achieve cost-efficient and high-performance wireless communication and sensing, and introduce the key technologies. In particular, we present the implementation of RHS with a wireless communication prototype, and report the experimental measurement results based on it. Finally, we outline some open challenges and potential future directions in this area.

Graph Neural Networks (GNNs) are widely used for analyzing graph-structured data. Most GNN methods are highly sensitive to the quality of graph structures and usually require a perfect graph structure for learning informative embeddings. However, the pervasiveness of noise in graphs necessitates learning robust representations for real-world problems. To improve the robustness of GNN models, many studies have been proposed around the central concept of Graph Structure Learning (GSL), which aims to jointly learn an optimized graph structure and corresponding representations. Towards this end, in the presented survey, we broadly review recent progress of GSL methods for learning robust representations. Specifically, we first formulate a general paradigm of GSL, and then review state-of-the-art methods classified by how they model graph structures, followed by applications that incorporate the idea of GSL in other graph tasks. Finally, we point out some issues in current studies and discuss future directions.

We study the problem of learning to reason in large scale knowledge graphs (KGs). More specifically, we describe a novel reinforcement learning framework for learning multi-hop relational paths: we use a policy-based agent with continuous states based on knowledge graph embeddings, which reasons in a KG vector space by sampling the most promising relation to extend its path. In contrast to prior work, our approach includes a reward function that takes the accuracy, diversity, and efficiency into consideration. Experimentally, we show that our proposed method outperforms a path-ranking based algorithm and knowledge graph embedding methods on Freebase and Never-Ending Language Learning datasets.

北京阿比特科技有限公司