亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

In this work we study the decidability of a class of global modal logics arising from Kripke frames evaluated over certain residuated lattices, known in the literature as modal many-valued logics. We exhibit a large family of these modal logics which are undecidable, in contrast with classical modal logic and propositional logics defined over the same classes of algebras. This family includes the global modal logics arising from Kripke frames evaluated over the standard Lukasiewicz and Product algebras. We later refine the previous result, and prove that global modal Lukasiewicz and Product logics are not even recursively axiomatizable. We conclude by solving negatively the open question of whether each global modal logic coincides with its local modal logic closed under the unrestricted necessitation rule.

相關內容

In deep learning, fine-grained N:M sparsity reduces the data footprint and bandwidth of a General Matrix multiply (GEMM) by x2, and doubles throughput by skipping computation of zero values. So far, it was only used to prune weights. We examine how this method can be used also for activations and their gradients (i.e., "neural gradients"). To this end, we first establish a tensor-level optimality criteria. Previous works aimed to minimize the mean-square-error (MSE) of each pruned block. We show that while minimization of the MSE works fine for pruning the activations, it catastrophically fails for the neural gradients. Instead, we show that optimal pruning of the neural gradients requires an unbiased minimum-variance pruning mask. We design such specialized masks, and find that in most cases, 1:2 sparsity is sufficient for training, and 2:4 sparsity is usually enough when this is not the case. Further, we suggest combining several such methods together in order to potentially speed up training even more. A reference implementation is supplied in //github.com/brianchmiel/Act-and-Grad-structured-sparsity.

In order to trust machine learning for high-stakes problems, we need models to be both reliable and interpretable. Recently, there has been a growing body of work on interpretable machine learning which generates human understandable insights into data, models, or predictions. At the same time, there has been increased interest in quantifying the reliability and uncertainty of machine learning predictions, often in the form of confidence intervals for predictions using conformal inference. Yet, there has been relatively little attention given to the reliability and uncertainty of machine learning interpretations, which is the focus of this paper. Our goal is to develop confidence intervals for a widely-used form of machine learning interpretation: feature importance. We specifically seek to develop universal model-agnostic and assumption-light confidence intervals for feature importance that will be valid for any machine learning model and for any regression or classification task. We do so by leveraging a form of random observation and feature subsampling called minipatch ensembles and show that our approach provides assumption-light asymptotic coverage for the feature importance score of any model. Further, our approach is fast as computations needed for inference come nearly for free as part of the ensemble learning process. Finally, we also show that our same procedure can be leveraged to provide valid confidence intervals for predictions, hence providing fast, simultaneous quantification of the uncertainty of both model predictions and interpretations. We validate our intervals on a series of synthetic and real data examples, showing that our approach detects the correct important features and exhibits many computational and statistical advantages over existing methods.

Solving the time-dependent Schr\"odinger equation is an important application area for quantum algorithms. We consider Schr\"odinger's equation in the semi-classical regime. Here the solutions exhibit strong multiple-scale behavior due to a small parameter $\hbar$, in the sense that the dynamics of the quantum states and the induced observables can occur on different spatial and temporal scales. Such a Schr\"odinger equation finds many applications, including in Born-Oppenheimer molecular dynamics and Ehrenfest dynamics. This paper considers quantum analogues of pseudo-spectral (PS) methods on classical computers. Estimates on the gate counts in terms of $\hbar$ and the precision $\varepsilon$ are obtained. It is found that the number of required qubits, $m$, scales only logarithmically with respect to $\hbar$. When the solution has bounded derivatives up to order $\ell$, the symmetric Trotting method has gate complexity $\mathcal{O}\Big({ (\varepsilon \hbar)^{-\frac12} \mathrm{polylog}(\varepsilon^{-\frac{3}{2\ell}} \hbar^{-1-\frac{1}{2\ell}})}\Big),$ provided that the diagonal unitary operators in the pseudo-spectral methods can be implemented with $\mathrm{poly}(m)$ operations. When physical observables are the desired outcomes, however, the step size in the time integration can be chosen independently of $\hbar$. The gate complexity in this case is reduced to $\mathcal{O}\Big({\varepsilon^{-\frac12} \mathrm{polylog}( \varepsilon^{-\frac3{2\ell}} \hbar^{-1} )}\Big),$ with $\ell$ again indicating the smoothness of the solution.

A long line of research about connectivity in the Massively Parallel Computation model has culminated in the seminal works of Andoni et al. [FOCS'18] and Behnezhad et al. [FOCS'19]. They provide a randomized algorithm for low-space MPC with conjectured to be optimal round complexity $O(\log D + \log \log_{\frac m n} n)$ and $O(m)$ space, for graphs on $n$ vertices with $m$ edges and diameter $D$. Surprisingly, a recent result of Coy and Czumaj [STOC'22] shows how to achieve the same deterministically. Unfortunately, however, their algorithm suffers from large local computation time. We present a deterministic connectivity algorithm that matches all the parameters of the randomized algorithm and, in addition, significantly reduces the local computation time to nearly linear. Our derandomization method is based on reducing the amount of randomness needed to allow for a simpler efficient search. While similar randomness reduction approaches have been used before, our result is not only strikingly simpler, but it is the first to have efficient local computation. This is why we believe it to serve as a starting point for the systematic development of computation-efficient derandomization approaches in low-memory MPC.

In this paper we study colorings (or tilings) of the two-dimensional grid $\mathbb{Z}^2$. A coloring is said to be valid with respect to a set $P$ of $n\times m$ rectangular patterns if all $n\times m$ sub-patterns of the coloring are in $P$. A coloring $c$ is said to be of low complexity with respect to a rectangle if there exist $m,n\in\mathbb{N}$ and a set $P$ of $n\times m$ rectangular patterns such that $c$ is valid with respect to $P$ and $|P|\leq nm$. Open since it was stated in 1997, Nivat's conjecture states that such a coloring is necessarily periodic. If Nivat's conjecture is true, all valid colorings with respect to $P$ such that $|P|\leq mn$ must be periodic. We prove that there exists at least one periodic coloring among the valid ones. We use this result to investigate the tiling problem, also known as the domino problem, which is well known to be undecidable in its full generality. However, we show that it is decidable in the low-complexity setting. Then, we use our result to show that Nivat's conjecture holds for uniformly recurrent configurations. These results also extend to other convex shapes in place of the rectangle.\\ After that, we prove that the $nm$ bound is multiplicatively optimal for the decidability of the domino problem, as for all $\varepsilon>0$ it is undecidable to determine if there exists a valid coloring for a given $m,n\in \mathbb{N}$ and set of rectangular patterns $P$ of size $n\times m$ such that $|P|\leq (1+\varepsilon)nm$. We prove a slightly better bound in the case where $m=n$, as well as constructing aperiodic SFTs of pretty low complexity.\\ This paper is an extended version of a paper published in STACS 2020.

We present a collection of modular open source C++ libraries for the development of logic synthesis applications. These libraries can be used to develop applications for the design of classical and emerging technologies, as well as for the implementation of quantum compilers. All libraries are well documented and well tested. Furthermore, being header-only, the libraries can be readily used as core components in complex logic synthesis systems.

Vision-and-language tasks have increasingly drawn more attention as a means to evaluate human-like reasoning in machine learning models. A popular task in the field is visual question answering (VQA), which aims to answer questions about images. However, VQA models have been shown to exploit language bias by learning the statistical correlations between questions and answers without looking into the image content: e.g., questions about the color of a banana are answered with yellow, even if the banana in the image is green. If societal bias (e.g., sexism, racism, ableism, etc.) is present in the training data, this problem may be causing VQA models to learn harmful stereotypes. For this reason, we investigate gender and racial bias in five VQA datasets. In our analysis, we find that the distribution of answers is highly different between questions about women and men, as well as the existence of detrimental gender-stereotypical samples. Likewise, we identify that specific race-related attributes are underrepresented, whereas potentially discriminatory samples appear in the analyzed datasets. Our findings suggest that there are dangers associated to using VQA datasets without considering and dealing with the potentially harmful stereotypes. We conclude the paper by proposing solutions to alleviate the problem before, during, and after the dataset collection process.

A fundamental goal of scientific research is to learn about causal relationships. However, despite its critical role in the life and social sciences, causality has not had the same importance in Natural Language Processing (NLP), which has traditionally placed more emphasis on predictive tasks. This distinction is beginning to fade, with an emerging area of interdisciplinary research at the convergence of causal inference and language processing. Still, research on causality in NLP remains scattered across domains without unified definitions, benchmark datasets and clear articulations of the remaining challenges. In this survey, we consolidate research across academic areas and situate it in the broader NLP landscape. We introduce the statistical challenge of estimating causal effects, encompassing settings where text is used as an outcome, treatment, or as a means to address confounding. In addition, we explore potential uses of causal inference to improve the performance, robustness, fairness, and interpretability of NLP models. We thus provide a unified overview of causal inference for the computational linguistics community.

Deep neural networks (DNNs) are successful in many computer vision tasks. However, the most accurate DNNs require millions of parameters and operations, making them energy, computation and memory intensive. This impedes the deployment of large DNNs in low-power devices with limited compute resources. Recent research improves DNN models by reducing the memory requirement, energy consumption, and number of operations without significantly decreasing the accuracy. This paper surveys the progress of low-power deep learning and computer vision, specifically in regards to inference, and discusses the methods for compacting and accelerating DNN models. The techniques can be divided into four major categories: (1) parameter quantization and pruning, (2) compressed convolutional filters and matrix factorization, (3) network architecture search, and (4) knowledge distillation. We analyze the accuracy, advantages, disadvantages, and potential solutions to the problems with the techniques in each category. We also discuss new evaluation metrics as a guideline for future research.

北京阿比特科技有限公司