亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

In this paper, we propose \textbf{UniCode}, a novel approach within the domain of multimodal large language models (MLLMs) that learns a unified codebook to efficiently tokenize visual, text, and potentially other types of signals. This innovation addresses a critical limitation in existing MLLMs: their reliance on a text-only codebook, which restricts MLLM's ability to generate images and texts in a multimodal context. Towards this end, we propose a language-driven iterative training paradigm, coupled with an in-context pre-training task we term ``image decompression'', enabling our model to interpret compressed visual data and generate high-quality images.The unified codebook empowers our model to extend visual instruction tuning to non-linguistic generation tasks. Moreover, UniCode is adaptable to diverse stacked quantization approaches in order to compress visual signals into a more compact token representation. Despite using significantly fewer parameters and less data during training, Unicode demonstrates promising capabilities in visual reconstruction and generation. It also achieves performances comparable to leading MLLMs across a spectrum of VQA benchmarks.

相關內容

This paper introduces RobotCycle, a novel ongoing project that leverages Autonomous Vehicle (AV) research to investigate how road infrastructure influences cyclist behaviour and safety during real-world journeys. The project's requirements were defined in collaboration with key stakeholders, including city planners, cyclists, and policymakers, informing the design of risk and safety metrics and the data collection criteria. We propose a data-driven approach relying on a novel, rich dataset of diverse traffic scenes and scenarios captured using a custom-designed wearable sensing unit. By analysing road-user trajectories, we identify normal path deviations indicating potential risks or hazardous interactions related to infrastructure elements in the environment. Our analysis correlates driving profiles and trajectory patterns with local road segments, driving conditions, and road-user interactions to predict traffic behaviours and identify critical scenarios. Moreover, by leveraging advancements in AV research, the project generates detailed 3D High-Definition Maps (HD Maps), traffic flow patterns, and trajectory models to provide a comprehensive assessment and analysis of the behaviour of all traffic agents. These data can then inform the design of cyclist-friendly road infrastructure, ultimately enhancing road safety and cyclability. The project provides valuable insights for enhancing cyclist protection and advancing sustainable urban mobility.

Driven by the surge in code generation using large language models (LLMs), numerous benchmarks have emerged to evaluate these LLMs capabilities. We conducted a large-scale human evaluation of HumanEval and MBPP, two popular benchmarks for Python code generation, analyzing their diversity and difficulty. Our findings unveil a critical bias towards a limited set of programming concepts, neglecting most of the other concepts entirely. Furthermore, we uncover a worrying prevalence of easy tasks, potentially inflating model performance estimations. To address these limitations, we propose a novel benchmark, PythonSaga, featuring 185 hand-crafted prompts on a balanced representation of 38 programming concepts across diverse difficulty levels.

In this paper, we present Misaka, a visualized swarm testbed for smart grid algorithm evaluation, also an extendable open-source open-hardware platform for developing tabletop tangible swarm interfaces. The platform consists of a collection of custom-designed 3 omni-directional wheels robots each 10 cm in diameter, high accuracy localization through a microdot pattern overlaid on top of the activity sheets, and a software framework for application development and control, while remaining affordable (per unit cost about 30 USD at the prototype stage). We illustrate the potential of tabletop swarm user interfaces through a set of smart grid algorithm application scenarios developed with Misaka.

This paper presents DeepKalPose, a novel approach for enhancing temporal consistency in monocular vehicle pose estimation applied on video through a deep-learning-based Kalman Filter. By integrating a Bi-directional Kalman filter strategy utilizing forward and backward time-series processing, combined with a learnable motion model to represent complex motion patterns, our method significantly improves pose accuracy and robustness across various conditions, particularly for occluded or distant vehicles. Experimental validation on the KITTI dataset confirms that DeepKalPose outperforms existing methods in both pose accuracy and temporal consistency.

Embedding models play a pivot role in modern NLP applications such as IR and RAG. While the context limit of LLMs has been pushed beyond 1 million tokens, embedding models are still confined to a narrow context window not exceeding 8k tokens, refrained from application scenarios requiring long inputs such as legal contracts. This paper explores context window extension of existing embedding models, pushing the limit to 32k without requiring additional training. First, we examine the performance of current embedding models for long context retrieval on our newly constructed LongEmbed benchmark. LongEmbed comprises two synthetic tasks and four carefully chosen real-world tasks, featuring documents of varying length and dispersed target information. Benchmarking results underscore huge room for improvement in these models. Based on this, comprehensive experiments show that training-free context window extension strategies like position interpolation can effectively extend the context window of existing embedding models by several folds, regardless of their original context being 512 or beyond 4k. Furthermore, for models employing absolute position encoding (APE), we show the possibility of further fine-tuning to harvest notable performance gains while strictly preserving original behavior for short inputs. For models using rotary position embedding (RoPE), significant enhancements are observed when employing RoPE-specific methods, such as NTK and SelfExtend, indicating RoPE's superiority over APE for context window extension. To facilitate future research, we release E5-Base-4k and E5-RoPE-Base, along with the LongEmbed benchmark.

We present \texttt{muRelBench}, a suite of synthetic benchmarks for weakly-relational abstract domains and their operations. For example, the benchmarks can support experimental evaluations of proposed algorithms such as domain closure.

A Magnetic field Aided Inertial Navigation System (MAINS) for indoor navigation is proposed in this paper. MAINS leverages an array of magnetometers to measure spatial variations in the magnetic field, which are then used to estimate the displacement and orientation changes of the system, thereby aiding the inertial navigation system (INS). Experiments show that MAINS significantly outperforms the stand-alone INS, demonstrating a remarkable two orders of magnitude reduction in position error. Furthermore, when compared to the state-of-the-art magnetic-field-aided navigation approach, the proposed method exhibits slightly improved horizontal position accuracy. On the other hand, it has noticeably larger vertical error on datasets with large magnetic field variations. However, one of the main advantages of MAINS compared to the state-of-the-art is that it enables flexible sensor configurations. The experimental results show that the position error after 2 minutes of navigation in most cases is less than 3 meters when using an array of 30 magnetometers. Thus, the proposed navigation solution has the potential to solve one of the key challenges faced with current magnetic-field simultaneous localization and mapping (SLAM) solutions: the very limited allowable length of the exploration phase during which unvisited areas are mapped.

In this paper, we propose a novel Feature Decomposition and Reconstruction Learning (FDRL) method for effective facial expression recognition. We view the expression information as the combination of the shared information (expression similarities) across different expressions and the unique information (expression-specific variations) for each expression. More specifically, FDRL mainly consists of two crucial networks: a Feature Decomposition Network (FDN) and a Feature Reconstruction Network (FRN). In particular, FDN first decomposes the basic features extracted from a backbone network into a set of facial action-aware latent features to model expression similarities. Then, FRN captures the intra-feature and inter-feature relationships for latent features to characterize expression-specific variations, and reconstructs the expression feature. To this end, two modules including an intra-feature relation modeling module and an inter-feature relation modeling module are developed in FRN. Experimental results on both the in-the-lab databases (including CK+, MMI, and Oulu-CASIA) and the in-the-wild databases (including RAF-DB and SFEW) show that the proposed FDRL method consistently achieves higher recognition accuracy than several state-of-the-art methods. This clearly highlights the benefit of feature decomposition and reconstruction for classifying expressions.

In this paper, we propose a conceptually simple and geometrically interpretable objective function, i.e. additive margin Softmax (AM-Softmax), for deep face verification. In general, the face verification task can be viewed as a metric learning problem, so learning large-margin face features whose intra-class variation is small and inter-class difference is large is of great importance in order to achieve good performance. Recently, Large-margin Softmax and Angular Softmax have been proposed to incorporate the angular margin in a multiplicative manner. In this work, we introduce a novel additive angular margin for the Softmax loss, which is intuitively appealing and more interpretable than the existing works. We also emphasize and discuss the importance of feature normalization in the paper. Most importantly, our experiments on LFW BLUFR and MegaFace show that our additive margin softmax loss consistently performs better than the current state-of-the-art methods using the same network architecture and training dataset. Our code has also been made available at //github.com/happynear/AMSoftmax

We study the problem of learning to reason in large scale knowledge graphs (KGs). More specifically, we describe a novel reinforcement learning framework for learning multi-hop relational paths: we use a policy-based agent with continuous states based on knowledge graph embeddings, which reasons in a KG vector space by sampling the most promising relation to extend its path. In contrast to prior work, our approach includes a reward function that takes the accuracy, diversity, and efficiency into consideration. Experimentally, we show that our proposed method outperforms a path-ranking based algorithm and knowledge graph embedding methods on Freebase and Never-Ending Language Learning datasets.

北京阿比特科技有限公司