亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

We present ConVOI, a novel method for autonomous robot navigation in real-world indoor and outdoor environments using Vision Language Models (VLMs). We employ VLMs in two ways: first, we leverage their zero-shot image classification capability to identify the context or scenario (e.g., indoor corridor, outdoor terrain, crosswalk, etc) of the robot's surroundings, and formulate context-based navigation behaviors as simple text prompts (e.g. ``stay on the pavement"). Second, we utilize their state-of-the-art semantic understanding and logical reasoning capabilities to compute a suitable trajectory given the identified context. To this end, we propose a novel multi-modal visual marking approach to annotate the obstacle-free regions in the RGB image used as input to the VLM with numbers, by correlating it with a local occupancy map of the environment. The marked numbers ground image locations in the real-world, direct the VLM's attention solely to navigable locations, and elucidate the spatial relationships between them and terrains depicted in the image to the VLM. Next, we query the VLM to select numbers on the marked image that satisfy the context-based behavior text prompt, and construct a reference path using the selected numbers. Finally, we propose a method to extrapolate the reference trajectory when the robot's environmental context has not changed to prevent unnecessary VLM queries. We use the reference trajectory to guide a motion planner, and demonstrate that it leads to human-like behaviors (e.g. not cutting through a group of people, using crosswalks, etc.) in various real-world indoor and outdoor scenarios.

相關內容

We present SCULPT, a novel 3D generative model for clothed and textured 3D meshes of humans. Specifically, we devise a deep neural network that learns to represent the geometry and appearance distribution of clothed human bodies. Training such a model is challenging, as datasets of textured 3D meshes for humans are limited in size and accessibility. Our key observation is that there exist medium-sized 3D scan datasets like CAPE, as well as large-scale 2D image datasets of clothed humans and multiple appearances can be mapped to a single geometry. To effectively learn from the two data modalities, we propose an unpaired learning procedure for pose-dependent clothed and textured human meshes. Specifically, we learn a pose-dependent geometry space from 3D scan data. We represent this as per vertex displacements w.r.t. the SMPL model. Next, we train a geometry conditioned texture generator in an unsupervised way using the 2D image data. We use intermediate activations of the learned geometry model to condition our texture generator. To alleviate entanglement between pose and clothing type, and pose and clothing appearance, we condition both the texture and geometry generators with attribute labels such as clothing types for the geometry, and clothing colors for the texture generator. We automatically generated these conditioning labels for the 2D images based on the visual question answering model BLIP and CLIP. We validate our method on the SCULPT dataset, and compare to state-of-the-art 3D generative models for clothed human bodies. Our code and data can be found at //sculpt.is.tue.mpg.de.

This paper introduces RoboCar, an open-source research platform for autonomous driving developed at the University of Luxembourg. RoboCar provides a modular, cost-effective framework for the development of experimental Autonomous Driving Systems (ADS), utilizing the 2018 KIA Soul EV. The platform integrates a robust hardware and software architecture that aligns with the vehicle's existing systems, minimizing the need for extensive modifications. It supports various autonomous driving functions and has undergone real-world testing on public roads in Luxembourg City. This paper outlines the platform's architecture, integration challenges, and initial test results, offering insights into its application in advancing autonomous driving research. RoboCar is available to anyone at //github.com/sntubix/robocar and is released under an open-source MIT license.

In the evolution towards 6G, integrating Artificial Intelligence (AI) with advanced network infrastructure emerges as a pivotal strategy for enhancing network intelligence and resource utilization. Existing distributed learning frameworks like Federated Learning and Split Learning often struggle with significant challenges in dynamic network environments including high synchronization demands, costly communication overheads, severe computing resource consumption, and data heterogeneity across network nodes. These obstacles hinder the applications of ubiquitous computing capabilities of 6G networks, especially in light of the trend of escalating model parameters and training data volumes. To address these challenges effectively, this paper introduces "Snake Learning", a cost-effective distributed learning framework. Specifically, Snake Learning respects the heterogeneity of inter-node computing capability and local data distribution in 6G networks, and sequentially trains the designated part of model layers on individual nodes. This layer-by-layer serpentine update mechanism contributes to significantly reducing the requirements for storage, memory and communication during the model training phase, and demonstrates superior adaptability and efficiency for both Computer Vision (CV) training and Large Language Model (LLM) fine-tuning tasks across homogeneous and heterogeneous data distributions.

In the field of low-light image enhancement, both traditional Retinex methods and advanced deep learning techniques such as Retinexformer have shown distinct advantages and limitations. Traditional Retinex methods, designed to mimic the human eye's perception of brightness and color, decompose images into illumination and reflection components but struggle with noise management and detail preservation under low light conditions. Retinexformer enhances illumination estimation through traditional self-attention mechanisms, but faces challenges with insufficient interpretability and suboptimal enhancement effects. To overcome these limitations, this paper introduces the RetinexMamba architecture. RetinexMamba not only captures the physical intuitiveness of traditional Retinex methods but also integrates the deep learning framework of Retinexformer, leveraging the computational efficiency of State Space Models (SSMs) to enhance processing speed. This architecture features innovative illumination estimators and damage restorer mechanisms that maintain image quality during enhancement. Moreover, RetinexMamba replaces the IG-MSA (Illumination-Guided Multi-Head Attention) in Retinexformer with a Fused-Attention mechanism, improving the model's interpretability. Experimental evaluations on the LOL dataset show that RetinexMamba outperforms existing deep learning approaches based on Retinex theory in both quantitative and qualitative metrics, confirming its effectiveness and superiority in enhancing low-light images.

Spurred by recent advances in Large Language Models (LLMs), virtual assistants are poised to take a leap forward in terms of their dialogue capabilities. Yet a major bottleneck to achieving genuinely transformative task-oriented dialogue capabilities remains the scarcity of high quality data. Existing datasets, while impressive in scale, have limited domain coverage and contain few genuinely challenging conversational phenomena; those which are present are typically unlabelled, making it difficult to assess the strengths and weaknesses of models without time-consuming and costly human evaluation. Moreover, creating high quality dialogue data has until now required considerable human input, limiting both the scale of these datasets and the ability to rapidly bootstrap data for a new target domain. We aim to overcome these issues with LUCID, a modularised and highly automated LLM-driven data generation system that produces realistic, diverse and challenging dialogues. We use LUCID to generate a seed dataset of 4,277 conversations across 100 intents to demonstrate its capabilities, with a human review finding consistently high quality labels in the generated data.

We present X-SLAM, a real-time dense differentiable SLAM system that leverages the complex-step finite difference (CSFD) method for efficient calculation of numerical derivatives, bypassing the need for a large-scale computational graph. The key to our approach is treating the SLAM process as a differentiable function, enabling the calculation of the derivatives of important SLAM parameters through Taylor series expansion within the complex domain. Our system allows for the real-time calculation of not just the gradient, but also higher-order differentiation. This facilitates the use of high-order optimizers to achieve better accuracy and faster convergence. Building on X-SLAM, we implemented end-to-end optimization frameworks for two important tasks: camera relocalization in wide outdoor scenes and active robotic scanning in complex indoor environments. Comprehensive evaluations on public benchmarks and intricate real scenes underscore the improvements in the accuracy of camera relocalization and the efficiency of robotic navigation achieved through our task-aware optimization. The code and data are available at //gapszju.github.io/X-SLAM.

Collective decision-making enables multi-robot systems to act autonomously in real-world environments. Existing collective decision-making mechanisms suffer from the so-called speed versus accuracy trade-off or rely on high complexity, e.g., by including global communication. Recent work has shown that more efficient collective decision-making mechanisms based on artificial neural networks can be generated using methods from evolutionary computation. A major drawback of these decision-making neural networks is their limited interpretability. Analyzing evolved decision-making mechanisms can help us improve the efficiency of hand-coded decision-making mechanisms while maintaining a higher interpretability. In this paper, we analyze evolved collective decision-making mechanisms in detail and hand-code two new decision-making mechanisms based on the insights gained. In benchmark experiments, we show that the newly implemented collective decision-making mechanisms are more efficient than the state-of-the-art collective decision-making mechanisms voter model and majority rule.

Because of the recent trends in Deep Neural Networks (DNN) models being memory-bound, inter-operator pipelining for DNN accelerators is emerging as a promising optimization. Inter-operator pipelining reduces costly on-chip global memory and off-chip memory accesses by forwarding the output of a layer as the input of the next layer within the compute array, which is proven to be an effective optimization by previous works. However, the design space of inter-operator pipelining is huge, and the space is not yet fully explored. In particular, identifying the right depth and granularity of pipelining (or no pipelining at all) is significantly dependent on the layer shapes and data volumes of weights and activations, and these are different even within a domain. Moreover, works divide the substrate into large chunks and map one layer onto each chunk, which requires communicating halfway through or through the global buffer. However, for fine-grained inter-operation pipelining, placing the corresponding consumer of the next layer tile close to the producer tile of the current layer is a better way to exploit fine-grained spatial reuse. In order to support variable number of layers (ie the right depth) and support multiple spatial organizations of layers (in accordance with the pipelining granularity) on the substrate, we propose PipeOrgan, a new class of spatial data organization strategy for energy efficient and congestion-free communication between the PEs for various pipeline depth and granularity. PipeOrgan takes advantage of flexible spatial organization and can allocate layers to PEs based on the granularity of pipelining. We also propose changes to the conventional mesh topology to improve the performance of coarse-grained allocation. PipeOrgan achieves 1.95x performance improvement over the state-of-the-art pipelined dataflow on XR-bench workloads.

We introduce ABACuS, a new low-cost hardware-counter-based RowHammer mitigation technique that performance-, energy-, and area-efficiently scales with worsening RowHammer vulnerability. We observe that both benign workloads and RowHammer attacks tend to access DRAM rows with the same row address in multiple DRAM banks at around the same time. Based on this observation, ABACuS's key idea is to use a single shared row activation counter to track activations to the rows with the same row address in all DRAM banks. Unlike state-of-the-art RowHammer mitigation mechanisms that implement a separate row activation counter for each DRAM bank, ABACuS implements fewer counters (e.g., only one) to track an equal number of aggressor rows. Our evaluations show that ABACuS securely prevents RowHammer bitflips at low performance/energy overhead and low area cost. We compare ABACuS to four state-of-the-art mitigation mechanisms. At a near-future RowHammer threshold of 1000, ABACuS incurs only 0.58% (0.77%) performance and 1.66% (2.12%) DRAM energy overheads, averaged across 62 single-core (8-core) workloads, requiring only 9.47 KiB of storage per DRAM rank. At the RowHammer threshold of 1000, the best prior low-area-cost mitigation mechanism incurs 1.80% higher average performance overhead than ABACuS, while ABACuS requires 2.50X smaller chip area to implement. At a future RowHammer threshold of 125, ABACuS performs very similarly to (within 0.38% of the performance of) the best prior performance- and energy-efficient RowHammer mitigation mechanism while requiring 22.72X smaller chip area. ABACuS is freely and openly available at //github.com/CMU-SAFARI/ABACuS.

Within the rapidly developing Internet of Things (IoT), numerous and diverse physical devices, Edge devices, Cloud infrastructure, and their quality of service requirements (QoS), need to be represented within a unified specification in order to enable rapid IoT application development, monitoring, and dynamic reconfiguration. But heterogeneities among different configuration knowledge representation models pose limitations for acquisition, discovery and curation of configuration knowledge for coordinated IoT applications. This paper proposes a unified data model to represent IoT resource configuration knowledge artifacts. It also proposes IoT-CANE (Context-Aware recommendatioN systEm) to facilitate incremental knowledge acquisition and declarative context driven knowledge recommendation.

北京阿比特科技有限公司