Agents built with large language models (LLMs) have recently achieved great advancements. However, most of the efforts focus on single-agent or cooperative settings, leaving more general multi-agent environments underexplored. We propose a new framework powered by reinforcement learning (RL) to develop strategic language agents, i.e., LLM-based agents with strategic thinking ability, for a popular language game, Werewolf. Werewolf is a social deduction game with hidden roles that involves both cooperation and competition and emphasizes deceptive communication and diverse gameplay. Our agent tackles this game by first using LLMs to reason about potential deceptions and generate a set of strategically diverse actions. Then an RL policy, which selects an action from the candidates, is learned by population-based training to enhance the agents' decision-making ability. By combining LLMs with the RL policy, our agent produces a variety of emergent strategies, achieves the highest win rate against other LLM-based agents, and stays robust against adversarial human players in the Werewolf game.
Large vision-language models (VLMs) such as GPT-4 have achieved exceptional performance across various multi-modal tasks. However, the deployment of VLMs necessitates substantial energy consumption and computational resources. Once attackers maliciously induce high energy consumption and latency time (energy-latency cost) during inference of VLMs, it will exhaust computational resources. In this paper, we explore this attack surface about availability of VLMs and aim to induce high energy-latency cost during inference of VLMs. We find that high energy-latency cost during inference of VLMs can be manipulated by maximizing the length of generated sequences. To this end, we propose verbose images, with the goal of crafting an imperceptible perturbation to induce VLMs to generate long sentences during inference. Concretely, we design three loss objectives. First, a loss is proposed to delay the occurrence of end-of-sequence (EOS) token, where EOS token is a signal for VLMs to stop generating further tokens. Moreover, an uncertainty loss and a token diversity loss are proposed to increase the uncertainty over each generated token and the diversity among all tokens of the whole generated sequence, respectively, which can break output dependency at token-level and sequence-level. Furthermore, a temporal weight adjustment algorithm is proposed, which can effectively balance these losses. Extensive experiments demonstrate that our verbose images can increase the length of generated sequences by 7.87 times and 8.56 times compared to original images on MS-COCO and ImageNet datasets, which presents potential challenges for various applications. Our code is available at //github.com/KuofengGao/Verbose_Images.
Recent advancements in large language models have facilitated the execution of complex language tasks, not only in English but also in non-English languages. However, the tokenizers of most language models, such as Llama, trained on English-centric corpora, tend to excessively fragment tokens in non-English languages. This issue is especially pronounced in non-roman alphabetic languages, which are often divided at a character or even Unicode level, leading to slower text generation. To address this, our study introduces a novel framework designed to expedite text generation in these languages. This framework predicts larger linguistic units than those of conventional multilingual tokenizers and is specifically tailored to the target language, thereby reducing the number of decoding steps required. Our empirical results demonstrate that the proposed framework increases the generation speed by a factor of 1.9 compared to standard decoding while maintaining the performance of a pre-trained multilingual model on monolingual tasks.
The Vision Transformer (ViT) demonstrates exceptional performance in various computer vision tasks. Attention is crucial for ViT to capture complex wide-ranging relationships among image patches, allowing the model to weigh the importance of image patches and aiding our understanding of the decision-making process. However, when utilizing the attention of ViT as evidence in high-stakes decision-making tasks such as medical diagnostics, a challenge arises due to the potential of attention mechanisms erroneously focusing on irrelevant regions. In this study, we propose a statistical test for ViT's attentions, enabling us to use the attentions as reliable quantitative evidence indicators for ViT's decision-making with a rigorously controlled error rate. Using the framework called selective inference, we quantify the statistical significance of attentions in the form of p-values, which enables the theoretically grounded quantification of the false positive detection probability of attentions. We demonstrate the validity and the effectiveness of the proposed method through numerical experiments and applications to brain image diagnoses.
Many real-world problems can be efficiently modeled as Mixed Integer Programs (MIPs) and solved with the Branch-and-Bound method. Prior work has shown the existence of MIP backdoors, small sets of variables such that prioritizing branching on them when possible leads to faster running times. However, finding high-quality backdoors that improve running times remains an open question. Previous work learns to estimate the relative solver speed of randomly sampled backdoors through ranking and then decide whether to use it. In this paper, we utilize the Monte-Carlo tree search method to collect backdoors for training, rather than relying on random sampling, and adapt a contrastive learning framework to train a Graph Attention Network model to predict backdoors. Our method, evaluated on four common MIP problem domains, demonstrates performance improvements over both Gurobi and previous models.
The use of low-rank adaptation (LoRA) with frozen pretrained language models (PLMs) has become increasing popular as a mainstream, resource-efficient modeling approach for memory-constrained hardware. In this study, we first explore how to enhance model performance by introducing various LoRA training strategies, achieving relative word error rate reductions of 3.50\% on the public Librispeech dataset and of 3.67\% on an internal dataset in the messaging domain. To further characterize the stability of LoRA-based second-pass speech recognition models, we examine robustness against input perturbations. These perturbations are rooted in homophone replacements and a novel metric called N-best Perturbation-based Rescoring Robustness (NPRR), both designed to measure the relative degradation in the performance of rescoring models. Our experimental results indicate that while advanced variants of LoRA, such as dynamic rank-allocated LoRA, lead to performance degradation in $1$-best perturbation, they alleviate the degradation in $N$-best perturbation. This finding is in comparison to fully-tuned models and vanilla LoRA tuning baselines, suggesting that a comprehensive selection is needed when using LoRA-based adaptation for compute-cost savings and robust language modeling.
Existing knowledge graph (KG) embedding models have primarily focused on static KGs. However, real-world KGs do not remain static, but rather evolve and grow in tandem with the development of KG applications. Consequently, new facts and previously unseen entities and relations continually emerge, necessitating an embedding model that can quickly learn and transfer new knowledge through growth. Motivated by this, we delve into an expanding field of KG embedding in this paper, i.e., lifelong KG embedding. We consider knowledge transfer and retention of the learning on growing snapshots of a KG without having to learn embeddings from scratch. The proposed model includes a masked KG autoencoder for embedding learning and update, with an embedding transfer strategy to inject the learned knowledge into the new entity and relation embeddings, and an embedding regularization method to avoid catastrophic forgetting. To investigate the impacts of different aspects of KG growth, we construct four datasets to evaluate the performance of lifelong KG embedding. Experimental results show that the proposed model outperforms the state-of-the-art inductive and lifelong embedding baselines.
Translational distance-based knowledge graph embedding has shown progressive improvements on the link prediction task, from TransE to the latest state-of-the-art RotatE. However, N-1, 1-N and N-N predictions still remain challenging. In this work, we propose a novel translational distance-based approach for knowledge graph link prediction. The proposed method includes two-folds, first we extend the RotatE from 2D complex domain to high dimension space with orthogonal transforms to model relations for better modeling capacity. Second, the graph context is explicitly modeled via two directed context representations. These context representations are used as part of the distance scoring function to measure the plausibility of the triples during training and inference. The proposed approach effectively improves prediction accuracy on the difficult N-1, 1-N and N-N cases for knowledge graph link prediction task. The experimental results show that it achieves better performance on two benchmark data sets compared to the baseline RotatE, especially on data set (FB15k-237) with many high in-degree connection nodes.
Pre-trained deep neural network language models such as ELMo, GPT, BERT and XLNet have recently achieved state-of-the-art performance on a variety of language understanding tasks. However, their size makes them impractical for a number of scenarios, especially on mobile and edge devices. In particular, the input word embedding matrix accounts for a significant proportion of the model's memory footprint, due to the large input vocabulary and embedding dimensions. Knowledge distillation techniques have had success at compressing large neural network models, but they are ineffective at yielding student models with vocabularies different from the original teacher models. We introduce a novel knowledge distillation technique for training a student model with a significantly smaller vocabulary as well as lower embedding and hidden state dimensions. Specifically, we employ a dual-training mechanism that trains the teacher and student models simultaneously to obtain optimal word embeddings for the student vocabulary. We combine this approach with learning shared projection matrices that transfer layer-wise knowledge from the teacher model to the student model. Our method is able to compress the BERT_BASE model by more than 60x, with only a minor drop in downstream task metrics, resulting in a language model with a footprint of under 7MB. Experimental results also demonstrate higher compression efficiency and accuracy when compared with other state-of-the-art compression techniques.
Deep convolutional neural networks (CNNs) have recently achieved great success in many visual recognition tasks. However, existing deep neural network models are computationally expensive and memory intensive, hindering their deployment in devices with low memory resources or in applications with strict latency requirements. Therefore, a natural thought is to perform model compression and acceleration in deep networks without significantly decreasing the model performance. During the past few years, tremendous progress has been made in this area. In this paper, we survey the recent advanced techniques for compacting and accelerating CNNs model developed. These techniques are roughly categorized into four schemes: parameter pruning and sharing, low-rank factorization, transferred/compact convolutional filters, and knowledge distillation. Methods of parameter pruning and sharing will be described at the beginning, after that the other techniques will be introduced. For each scheme, we provide insightful analysis regarding the performance, related applications, advantages, and drawbacks etc. Then we will go through a few very recent additional successful methods, for example, dynamic capacity networks and stochastic depths networks. After that, we survey the evaluation matrix, the main datasets used for evaluating the model performance and recent benchmarking efforts. Finally, we conclude this paper, discuss remaining challenges and possible directions on this topic.
Visual Question Answering (VQA) models have struggled with counting objects in natural images so far. We identify a fundamental problem due to soft attention in these models as a cause. To circumvent this problem, we propose a neural network component that allows robust counting from object proposals. Experiments on a toy task show the effectiveness of this component and we obtain state-of-the-art accuracy on the number category of the VQA v2 dataset without negatively affecting other categories, even outperforming ensemble models with our single model. On a difficult balanced pair metric, the component gives a substantial improvement in counting over a strong baseline by 6.6%.