亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Training fair machine learning models becomes more and more important. As many powerful models are trained by collaboration among multiple parties, each holding some sensitive data, it is natural to explore the feasibility of training fair models in federated learning so that the fairness of trained models, the data privacy of clients, and the collaboration between clients can be fully respected simultaneously. However, the task of training fair models in federated learning is challenging, since it is far from trivial to estimate the fairness of a model without knowing the private data of the participating parties, which is often constrained by privacy requirements in federated learning. In this paper, we first propose a federated estimation method to accurately estimate the fairness of a model without infringing the data privacy of any party. Then, we use the fairness estimation to formulate a novel problem of training fair models in federated learning. We develop FedFair, a well-designed federated learning framework, which can successfully train a fair model with high performance without data privacy infringement. Our extensive experiments on three real-world data sets demonstrate the excellent fair model training performance of our method.

相關內容

The process of creating training data to teach models is currently driven by humans, who manually analyze model weaknesses and plan how to create data that improves a student model. Approaches using LLMs as annotators reduce human effort, but still require humans to interpret feedback from evaluations and control the LLM to produce data the student needs. Automating this labor-intensive process by creating autonomous data generation agents - or teachers - is desirable, but requires environments that can simulate the feedback-driven, iterative, closed loop of data creation. To enable rapid, scalable testing for such agents and their modules, we introduce DataEnvGym, a testbed of teacher environments for data generation agents. DataEnvGym frames data generation as a sequential decision-making task, involving an agent consisting of a data generation policy (which generates a plan for creating training data) and a data generation engine (which transforms the plan into data), inside an environment that provides student feedback. The agent's goal is to improve student performance. Students are iteratively trained and evaluated on generated data, and their feedback (in the form of errors or weak skills) is reported to the agent after each iteration. DataEnvGym includes multiple teacher environment instantiations across 3 levels of structure in the state representation and action space. More structured environments are based on inferred skills and offer more interpretability and curriculum control. We support 4 domains (math, code, VQA, and tool-use) and test multiple students and teachers. Example agents in our teaching environments can iteratively improve students across tasks and settings. Moreover, we show that environments teach different skill levels and test variants of key modules, pointing to future work in improving data generation agents, engines, and feedback mechanisms.

Adversarial training with Normalizing Flow (NF) models is an emerging research area aimed at improving model robustness through adversarial samples. In this study, we focus on applying adversarial training to NF models for gravitational wave parameter estimation. We propose an adaptive epsilon method for Fast Gradient Sign Method (FGSM) adversarial training, which dynamically adjusts perturbation strengths based on gradient magnitudes using logarithmic scaling. Our hybrid architecture, combining ResNet and Inverse Autoregressive Flow, reduces the Negative Log Likelihood (NLL) loss by 47\% under FGSM attacks compared to the baseline model, while maintaining an NLL of 4.2 on clean data (only 5\% higher than the baseline). For perturbation strengths between 0.01 and 0.1, our model achieves an average NLL of 5.8, outperforming both fixed-epsilon (NLL: 6.7) and progressive-epsilon (NLL: 7.2) methods. Under stronger Projected Gradient Descent attacks with perturbation strength of 0.05, our model maintains an NLL of 6.4, demonstrating superior robustness while avoiding catastrophic overfitting.

Recent work on permutation-based model merging has shown impressive low- or zero-barrier mode connectivity between models from completely different initializations. However, this line of work has not yet extended to the Transformer architecture, despite its dominant popularity in the language domain. Therefore, in this work, we investigate the extent to which separate Transformer minima learn similar features, and propose a model merging technique to investigate the relationship between these minima in the loss landscape. The specifics of the architecture, like its residual connections, multi-headed attention, and discrete, sequential input, require specific interventions in order to compute model permutations that remain within the same functional equivalence class. In merging these models with our method, we consistently find lower loss barriers between minima compared to model averaging, across models trained on a masked-language modeling task or fine-tuned on a language understanding benchmark. Our results show that the minima of these models are less sharp and isolated than previously understood, and provide a basis for future work on merging separately trained Transformer models.

The sheer scale of data required to train modern large language models (LLMs) poses significant risks, as models are likely to gain knowledge of sensitive topics such as bio-security, as well the ability to replicate copyrighted works. Methods designed to remove such knowledge must do so from all prompt directions, in a multi-lingual capacity and without degrading general model performance. To this end, we introduce the targeted angular reversal (TARS) method of knowledge removal from LLMs. The TARS method firstly leverages the LLM in combination with a detailed prompt to aggregate information about a selected concept in the internal representation space of the LLM. It then refines this approximate concept vector to trigger the concept token with high probability, by perturbing the approximate concept vector with noise and transforming it into token scores with the language model head. The feedforward weight vectors in the LLM which operate directly on the internal representation space, and have the highest cosine similarity with this targeting vector, are then replaced by a reversed targeting vector, thus limiting the ability of the concept to propagate through the model. The modularity of the TARS method allows for a sequential removal of concepts from Llama 3.1 8B, such as the famous literary detective Sherlock Holmes, and the planet Saturn. It is demonstrated that the probability of triggering target concepts can be reduced to 0.00 with as few as 1 TARS edit, whilst simultaneously removing the knowledge bi-directionally. Moreover, knowledge is shown to be removed across all languages despite only being targeted in English. Importantly, TARS has minimal impact on the general model capabilities, as after removing 5 diverse concepts in a modular fashion, there is minimal KL divergence in the next token probabilities of the LLM on large corpora of Wikipedia text (median of 0.0015).

Previous studies showed that image datasets lacking geographic diversity can lead to biased performance in models trained on them. While earlier work studied general-purpose image datasets (e.g., ImageNet) and simple tasks like image recognition, we investigated geo-biases in real-world driving datasets on a more complex task: instance segmentation. We examined if instance segmentation models trained on European driving scenes (Eurocentric models) are geo-biased. Consistent with previous work, we found that Eurocentric models were geo-biased. Interestingly, we found that geo-biases came from classification errors rather than localization errors, with classification errors alone contributing 10-90% of the geo-biases in segmentation and 19-88% of the geo-biases in detection. This showed that while classification is geo-biased, localization (including detection and segmentation) is geographically robust. Our findings show that in region-specific models (e.g., Eurocentric models), geo-biases from classification errors can be significantly mitigated by using coarser classes (e.g., grouping car, bus, and truck as 4-wheeler).

Autonomous robots are projected to augment the manual workforce, especially in repetitive and hazardous tasks. For a successful deployment of such robots in human environments, it is crucial to guarantee human safety. State-of-the-art approaches to ensure human safety are either too restrictive to permit a natural human-robot collaboration or make strong assumptions that do not hold when for autonomous robots, e.g., knowledge of a pre-defined trajectory. Therefore, we propose SaRA-shield, a power and force limiting framework for AI-based manipulation in human environments that gives formal safety guarantees while allowing for fast robot speeds. As recent studies have shown that unconstrained collisions allow for significantly higher contact forces than constrained collisions (clamping), we propose to classify contacts by their collision type using reachability analysis. We then verify that the kinetic energy of the robot is below pain and injury thresholds for the detected collision type of the respective human body part in contact. Our real-world experiments show that SaRA-shield can effectively reduce the speed of the robot to adhere to injury-preventing energy limits.

Generative models are now capable of producing highly realistic images that look nearly indistinguishable from the data on which they are trained. This raises the question: if we have good enough generative models, do we still need datasets? We investigate this question in the setting of learning general-purpose visual representations from a black-box generative model rather than directly from data. Given an off-the-shelf image generator without any access to its training data, we train representations from the samples output by this generator. We compare several representation learning methods that can be applied to this setting, using the latent space of the generator to generate multiple "views" of the same semantic content. We show that for contrastive methods, this multiview data can naturally be used to identify positive pairs (nearby in latent space) and negative pairs (far apart in latent space). We find that the resulting representations rival those learned directly from real data, but that good performance requires care in the sampling strategy applied and the training method. Generative models can be viewed as a compressed and organized copy of a dataset, and we envision a future where more and more "model zoos" proliferate while datasets become increasingly unwieldy, missing, or private. This paper suggests several techniques for dealing with visual representation learning in such a future. Code is released on our project page: //ali-design.github.io/GenRep/

Automatic KB completion for commonsense knowledge graphs (e.g., ATOMIC and ConceptNet) poses unique challenges compared to the much studied conventional knowledge bases (e.g., Freebase). Commonsense knowledge graphs use free-form text to represent nodes, resulting in orders of magnitude more nodes compared to conventional KBs (18x more nodes in ATOMIC compared to Freebase (FB15K-237)). Importantly, this implies significantly sparser graph structures - a major challenge for existing KB completion methods that assume densely connected graphs over a relatively smaller set of nodes. In this paper, we present novel KB completion models that can address these challenges by exploiting the structural and semantic context of nodes. Specifically, we investigate two key ideas: (1) learning from local graph structure, using graph convolutional networks and automatic graph densification and (2) transfer learning from pre-trained language models to knowledge graphs for enhanced contextual representation of knowledge. We describe our method to incorporate information from both these sources in a joint model and provide the first empirical results for KB completion on ATOMIC and evaluation with ranking metrics on ConceptNet. Our results demonstrate the effectiveness of language model representations in boosting link prediction performance and the advantages of learning from local graph structure (+1.5 points in MRR for ConceptNet) when training on subgraphs for computational efficiency. Further analysis on model predictions shines light on the types of commonsense knowledge that language models capture well.

Visual Question Answering (VQA) models have struggled with counting objects in natural images so far. We identify a fundamental problem due to soft attention in these models as a cause. To circumvent this problem, we propose a neural network component that allows robust counting from object proposals. Experiments on a toy task show the effectiveness of this component and we obtain state-of-the-art accuracy on the number category of the VQA v2 dataset without negatively affecting other categories, even outperforming ensemble models with our single model. On a difficult balanced pair metric, the component gives a substantial improvement in counting over a strong baseline by 6.6%.

Recommender System (RS) is a hot area where artificial intelligence (AI) techniques can be effectively applied to improve performance. Since the well-known Netflix Challenge, collaborative filtering (CF) has become the most popular and effective recommendation method. Despite their success in CF, various AI techniques still have to face the data sparsity and cold start problems. Previous works tried to solve these two problems by utilizing auxiliary information, such as social connections among users and meta-data of items. However, they process different types of information separately, leading to information loss. In this work, we propose to utilize Heterogeneous Information Network (HIN), which is a natural and general representation of different types of data, to enhance CF-based recommending methods. HIN-based recommender systems face two problems: how to represent high-level semantics for recommendation and how to fuse the heterogeneous information to recommend. To address these problems, we propose to applying meta-graph to HIN-based RS and solve the information fusion problem with a "matrix factorization (MF) + factorization machine (FM)" framework. For the "MF" part, we obtain user-item similarity matrices from each meta-graph and adopt low-rank matrix approximation to get latent features for both users and items. For the "FM" part, we propose to apply FM with Group lasso (FMG) on the obtained features to simultaneously predict missing ratings and select useful meta-graphs. Experimental results on two large real-world datasets, i.e., Amazon and Yelp, show that our proposed approach is better than that of the state-of-the-art FM and other HIN-based recommending methods.

北京阿比特科技有限公司