亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Granular materials are of critical interest to many robotic tasks in planetary science, construction, and manufacturing. However, the dynamics of granular materials are complex and often computationally very expensive to simulate. We propose a set of methodologies and a system for the fast simulation of granular materials on Graphics Processing Units (GPUs), and show that this simulation is fast enough for basic training with Reinforcement Learning algorithms, which currently require many dynamics samples to achieve acceptable performance. Our method models granular material dynamics using implicit timestepping methods for multibody rigid contacts, as well as algorithmic techniques for efficient parallel collision detection between pairs of particles and between particle and arbitrarily shaped rigid bodies, and programming techniques for minimizing warp divergence on Single-Instruction, Multiple-Thread (SIMT) chip architectures. We showcase our simulation system on several environments targeted toward robotic tasks, and release our simulator as an open-source tool.

相關內容

Point processes model the occurrence of a countable number of random points over some support. They can model diverse phenomena, such as chemical reactions, stock market transactions and social interactions. We show that JumpProcesses.jl is a fast, general-purpose library for simulating point processes. JumpProcesses.jl was first developed for simulating jump processes via stochastic simulation algorithms (SSAs) (including Doob's method, Gillespie's methods, and Kinetic Monte Carlo methods). Historically, jump processes have been developed in the context of dynamical systems to describe dynamics with discrete jumps. In contrast, the development of point processes has been more focused on describing the occurrence of random events. In this paper, we bridge the gap between the treatment of point and jump process simulation. The algorithms previously included in JumpProcesses.jl can be mapped to three general methods developed in statistics for simulating evolutionary point processes. Our comparative exercise revealed that the library initially lacked an efficient algorithm for simulating processes with variable intensity rates. We, therefore, extended JumpProcesses.jl with a new simulation algorithm, Coevolve, that enables the rapid simulation of processes with locally-bounded variable intensity rates. It is now possible to efficiently simulate any point process on the real line with a non-negative, left-continuous, history-adapted and locally bounded intensity rate coupled or not with differential equations. This extension significantly improves the computational performance of JumpProcesses.jl when simulating such processes, enabling it to become one of the few readily available, fast, general-purpose libraries for simulating evolutionary point processes.

The CALPHAD system of fundamental phase-level databases, now known as the Materials Genome, has enabled a mature technology of computational materials design and qualification that has already met the acceleration goals of the national Materials Genome Initiative. As first commercialized by QuesTek Innovations, the methodology combines efficient genomic-level parametric design of new material composition and process specifications with multidisciplinary simulation-based forecasting of manufacturing variation, integrating efficient uncertainty management. Recent projects demonstrated under the multi-institutional CHiMaD Design Center notably include novel alloys designed specifically for the new technology of additive manufacturing. With the proven success of the CALPHAD-based Materials Genome technology, current university research emphasizes new methodologies for affordable accelerated expansion of more accurate CALPHAD databases. Rapid adoption of these new capabilities by US apex corporations has compressed the materials design and development cycle to under 2 years, enabling a new "materials concurrency" integrated into a new level of concurrent engineering supporting an unprecedented level of manufacturing innovation.

Perfect synchronization in distributed machine learning problems is inefficient and even impossible due to the existence of latency, package losses and stragglers. We propose a Robust Fully-Asynchronous Stochastic Gradient Tracking method (R-FAST), where each device performs local computation and communication at its own pace without any form of synchronization. Different from existing asynchronous distributed algorithms, R-FAST can eliminate the impact of data heterogeneity across devices and allow for packet losses by employing a robust gradient tracking strategy that relies on properly designed auxiliary variables for tracking and buffering the overall gradient vector. More importantly, the proposed method utilizes two spanning-tree graphs for communication so long as both share at least one common root, enabling flexible designs in communication architectures. We show that R-FAST converges in expectation to a neighborhood of the optimum with a geometric rate for smooth and strongly convex objectives; and to a stationary point with a sublinear rate for general non-convex settings. Extensive experiments demonstrate that R-FAST runs 1.5-2 times faster than synchronous benchmark algorithms, such as Ring-AllReduce and D-PSGD, while still achieving comparable accuracy, and outperforms existing asynchronous SOTA algorithms, such as AD-PSGD and OSGP, especially in the presence of stragglers.

Recent advances in hardware and big data acquisition have accelerated the development of deep learning techniques. For an extended period of time, increasing the model complexity has led to performance improvements for various tasks. However, this trend is becoming unsustainable and there is a need for alternative, computationally lighter methods. In this paper, we introduce a novel framework for efficient training of convolutional neural networks (CNNs) for large-scale spatial problems. To accomplish this we investigate the properties of CNNs for tasks where the underlying signals are stationary. We show that a CNN trained on small windows of such signals achieves a nearly performance on much larger windows without retraining. This claim is supported by our theoretical analysis, which provides a bound on the performance degradation. Additionally, we conduct thorough experimental analysis on two tasks: multi-target tracking and mobile infrastructure on demand. Our results show that the CNN is able to tackle problems with many hundreds of agents after being trained with fewer than ten. Thus, CNN architectures provide solutions to these problems at previously computationally intractable scales.

Spiking neural networks (SNNs) are bio-plausible computing models with high energy efficiency. The temporal dynamics of neurons and synapses enable them to detect temporal patterns and generate sequences. While Backpropagation Through Time (BPTT) is traditionally used to train SNNs, it is not suitable for online learning of embedded applications due to its high computation and memory cost as well as extended latency. Previous works have proposed online learning algorithms, but they often utilize highly simplified spiking neuron models without synaptic dynamics and reset feedback, resulting in subpar performance. In this work, we present Spatiotemporal Online Learning for Synaptic Adaptation (SOLSA), specifically designed for online learning of SNNs composed of Leaky Integrate and Fire (LIF) neurons with exponentially decayed synapses and soft reset. The algorithm not only learns the synaptic weight but also adapts the temporal filters associated to the synapses. Compared to the BPTT algorithm, SOLSA has much lower memory requirement and achieves a more balanced temporal workload distribution. Moreover, SOLSA incorporates enhancement techniques such as scheduled weight update, early stop training and adaptive synapse filter, which speed up the convergence and enhance the learning performance. When compared to other non-BPTT based SNN learning, SOLSA demonstrates an average learning accuracy improvement of 14.2%. Furthermore, compared to BPTT, SOLSA achieves a 5% higher average learning accuracy with a 72% reduction in memory cost.

Goal-Conditioned Reinforcement Learning (GCRL) can enable agents to spontaneously set diverse goals to learn a set of skills. Despite the excellent works proposed in various fields, reaching distant goals in temporally extended tasks remains a challenge for GCRL. Current works tackled this problem by leveraging planning algorithms to plan intermediate subgoals to augment GCRL. Their methods need two crucial requirements: (i) a state representation space to search valid subgoals, and (ii) a distance function to measure the reachability of subgoals. However, they struggle to scale to high-dimensional state space due to their non-compact representations. Moreover, they cannot collect high-quality training data through standard GC policies, which results in an inaccurate distance function. Both affect the efficiency and performance of planning and policy learning. In the paper, we propose a goal-conditioned RL algorithm combined with Disentanglement-based Reachability Planning (REPlan) to solve temporally extended tasks. In REPlan, a Disentangled Representation Module (DRM) is proposed to learn compact representations which disentangle robot poses and object positions from high-dimensional observations in a self-supervised manner. A simple REachability discrimination Module (REM) is also designed to determine the temporal distance of subgoals. Moreover, REM computes intrinsic bonuses to encourage the collection of novel states for training. We evaluate our REPlan in three vision-based simulation tasks and one real-world task. The experiments demonstrate that our REPlan significantly outperforms the prior state-of-the-art methods in solving temporally extended tasks.

Many food products involve mixtures of ingredients, where the mixtures can be expressed as combinations of ingredient proportions. In many cases, the quality and the consumer preference may also depend on the way in which the mixtures are processed. The processing is generally defined by the settings of one or more process variables. Experimental designs studying the joint impact of the mixture ingredient proportions and the settings of the process variables are called mixture-process variable experiments. In this article, we show how to combine mixture-process variable experiments and discrete choice experiments, to quantify and model consumer preferences for food products that can be viewed as processed mixtures. First, we describe the modeling of data from such combined experiments. Next, we describe how to generate D- and I-optimal designs for choice experiments involving mixtures and process variables, and we compare the two kinds of designs using two examples.

Imitation learning (IL) seeks to teach agents specific tasks through expert demonstrations. One of the key approaches to IL is to define a distance between agent and expert and to find an agent policy that minimizes that distance. Optimal transport methods have been widely used in imitation learning as they provide ways to measure meaningful distances between agent and expert trajectories. However, the problem of how to optimally combine multiple expert demonstrations has not been widely studied. The standard method is to simply concatenate state (-action) trajectories, which is problematic when trajectories are multi-modal. We propose an alternative method that uses a multi-marginal optimal transport distance and enables the combination of multiple and diverse state-trajectories in the OT sense, providing a more sensible geometric average of the demonstrations. Our approach enables an agent to learn from several experts, and its efficiency is analyzed on OpenAI Gym control environments and demonstrates that the standard method is not always optimal.

Convolutional networks (ConvNets) have achieved great successes in various challenging vision tasks. However, the performance of ConvNets would degrade when encountering the domain shift. The domain adaptation is more significant while challenging in the field of biomedical image analysis, where cross-modality data have largely different distributions. Given that annotating the medical data is especially expensive, the supervised transfer learning approaches are not quite optimal. In this paper, we propose an unsupervised domain adaptation framework with adversarial learning for cross-modality biomedical image segmentations. Specifically, our model is based on a dilated fully convolutional network for pixel-wise prediction. Moreover, we build a plug-and-play domain adaptation module (DAM) to map the target input to features which are aligned with source domain feature space. A domain critic module (DCM) is set up for discriminating the feature space of both domains. We optimize the DAM and DCM via an adversarial loss without using any target domain label. Our proposed method is validated by adapting a ConvNet trained with MRI images to unpaired CT data for cardiac structures segmentations, and achieved very promising results.

We propose a new method for event extraction (EE) task based on an imitation learning framework, specifically, inverse reinforcement learning (IRL) via generative adversarial network (GAN). The GAN estimates proper rewards according to the difference between the actions committed by the expert (or ground truth) and the agent among complicated states in the environment. EE task benefits from these dynamic rewards because instances and labels yield to various extents of difficulty and the gains are expected to be diverse -- e.g., an ambiguous but correctly detected trigger or argument should receive high gains -- while the traditional RL models usually neglect such differences and pay equal attention on all instances. Moreover, our experiments also demonstrate that the proposed framework outperforms state-of-the-art methods, without explicit feature engineering.

北京阿比特科技有限公司