In this paper, we investigate the streaming bandits problem, wherein the learner aims to minimize regret by dealing with online arriving arms and sublinear arm memory. We establish the tight worst-case regret lower bound of $\Omega \left( (TB)^{\alpha} K^{1-\alpha}\right), \alpha = 2^{B} / (2^{B+1}-1)$ for any algorithm with a time horizon $T$, number of arms $K$, and number of passes $B$. The result reveals a separation between the stochastic bandits problem in the classical centralized setting and the streaming setting with bounded arm memory. Notably, in comparison to the well-known $\Omega(\sqrt{KT})$ lower bound, an additional double logarithmic factor is unavoidable for any streaming bandits algorithm with sublinear memory permitted. Furthermore, we establish the first instance-dependent lower bound of $\Omega \left(T^{1/(B+1)} \sum_{\Delta_x>0} \frac{\mu^*}{\Delta_x}\right)$ for streaming bandits. These lower bounds are derived through a unique reduction from the regret-minimization setting to the sample complexity analysis for a sequence of $\epsilon$-optimal arms identification tasks, which maybe of independent interest. To complement the lower bound, we also provide a multi-pass algorithm that achieves a regret upper bound of $\tilde{O} \left( (TB)^{\alpha} K^{1 - \alpha}\right)$ using constant arm memory.
Benefiting from the sequence-level knowledge distillation, the Non-Autoregressive Transformer (NAT) achieves great success in neural machine translation tasks. However, existing knowledge distillation has side effects, such as propagating errors from the teacher to NAT students, which may limit further improvements of NAT models and are rarely discussed in existing research. In this paper, we introduce selective knowledge distillation by introducing an NAT evaluator to select NAT-friendly targets that are of high quality and easy to learn. In addition, we introduce a simple yet effective progressive distillation method to boost NAT performance. Experiment results on multiple WMT language directions and several representative NAT models show that our approach can realize a flexible trade-off between the quality and complexity of training data for NAT models, achieving strong performances. Further analysis shows that distilling only 5% of the raw translations can help an NAT outperform its counterpart trained on raw data by about 2.4 BLEU.
In this paper, we explore two fundamental first-order algorithms in convex optimization, namely, gradient descent (GD) and proximal gradient method (ProxGD). Our focus is on making these algorithms entirely adaptive by leveraging local curvature information of smooth functions. We propose adaptive versions of GD and ProxGD that are based on observed gradient differences and, thus, have no added computational costs. Moreover, we prove convergence of our methods assuming only local Lipschitzness of the gradient. In addition, the proposed versions allow for even larger stepsizes than those initially suggested in [MM20].
Recommender Systems are built to retrieve relevant items to satisfy users' information needs. The candidate corpus usually consists of a finite set of items that are ready to be served, such as videos, products, or articles. With recent advances in Generative AI such as GPT and Diffusion models, a new form of recommendation task is yet to be explored where items are to be created by generative models with personalized prompts. Taking image generation as an example, with a single prompt from the user and access to a generative model, it is possible to generate hundreds of new images in a few minutes. How shall we attain personalization in the presence of "infinite" items? In this preliminary study, we propose a two-stage framework, namely Prompt-Model Retrieval and Generated Item Ranking, to approach this new task formulation. We release GEMRec-18K, a prompt-model interaction dataset with 18K images generated by 200 publicly-available generative models paired with a diverse set of 90 textual prompts. Our findings demonstrate the promise of generative model recommendation as a novel personalization problem and the limitations of existing evaluation metrics. We highlight future directions for the RecSys community to advance towards generative recommender systems. Our code and dataset are available at //github.com/MAPS-research/GEMRec.
Learning with expert advice and multi-armed bandit are two classic online decision problems which differ on how the information is observed in each round of the game. We study a family of problems interpolating the two. For a vector $\mathbf{m}=(m_1,\dots,m_K)\in \mathbb{N}^K$, an instance of $\mathbf{m}$-MAB indicates that the arms are partitioned into $K$ groups and the $i$-th group contains $m_i$ arms. Once an arm is pulled, the losses of all arms in the same group are observed. We prove tight minimax regret bounds for $\mathbf{m}$-MAB and design an optimal PAC algorithm for its pure exploration version, $\mathbf{m}$-BAI, where the goal is to identify the arm with minimum loss with as few rounds as possible. We show that the minimax regret of $\mathbf{m}$-MAB is $\Theta\left(\sqrt{T\sum_{k=1}^K\log (m_k+1)}\right)$ and the minimum number of pulls for an $(\epsilon,0.05)$-PAC algorithm of $\mathbf{m}$-BAI is $\Theta\left(\frac{1}{\epsilon^2}\cdot \sum_{k=1}^K\log (m_k+1)\right)$. Both our upper bounds and lower bounds for $\mathbf{m}$-MAB can be extended to a more general setting, namely the bandit with graph feedback, in terms of the clique cover and related graph parameters. As consequences, we obtained tight minimax regret bounds for several families of feedback graphs.
This paper addresses the statistical problem of estimating the infinite-norm deviation from the empirical mean to the distribution mean for high-dimensional distributions on $\{0,1\}^d$, with potentially $d=\infty$. Unlike traditional bounds as in the classical Glivenko-Cantelli theorem, we explore the instance-dependent convergence behavior. For product distributions, we provide the exact non-asymptotic behavior of the expected maximum deviation, revealing various regimes of decay. In particular, these tight bounds recover the known asymptotic sub-Gaussian behavior, and demonstrate the necessity of a previously proposed factor for an upper bound, answering a corresponding COLT 2023 open problem.
In this paper, we investigate several extremal combinatorics problems that ask for the maximum number of copies of a fixed subgraph given the number of edges. We call this type of problems Kruskal--Katona-type problems. Most of the problems that will be discussed in this paper are related to the joints problem. There are two main results in this paper. First, we prove that, in a $3$-colored graph with $R$ red, $G$ green, $B$ blue edges, the number of rainbow triangles is at most $\sqrt{2RGB}$, which is sharp. Second, we give a generalization of the Kruskal--Katona theorem that implies many other previous generalizations. Both arguments use the entropy method, and the main innovation lies in a more clever argument that improves bounds given by Shearer's inequality.
We study non-monetary mechanisms for the fair and efficient allocation of reusable public resources, i.e., resources used for varying durations. We consider settings where a limited resource is repeatedly shared among a set of agents, each of whom may request to use the resource over multiple consecutive rounds, receiving utility only if they get to use the resource for the full duration of their request. Such settings are of particular significance in scientific research where large-scale instruments such as electron microscopes, particle colliders, or telescopes are shared between multiple research groups; this model also subsumes and extends existing models of repeated non-monetary allocation where resources are required for a single round only. We study a simple pseudo-market mechanism where upfront we endow each agent with a budget of artificial credits, proportional to the fair share of the resource we want the agent to receive. The endowments thus define for each agent her ideal utility as that which she derives from her favorite allocation with no competition, but subject to getting at most her fair share of the resource across rounds. Next, on each round, and for each available resource item, our mechanism runs a first-price auction with a selective reserve, wherein each agent submits a desired duration and a per-round-bid, which must be at least the reserve price if requesting for multiple rounds; the bidder with the highest per-round-bid wins, and gets to use the item for the desired duration. We consider this problem in a Bayesian setting and show that under a carefully chosen reserve price, irrespective of how others bid, each agent has a simple strategy that guarantees she receives a $1/2$ fraction of her ideal utility in expectation. We also show this result is tight, i.e., no mechanism can guarantee that all agents get more than half of their ideal utility.
Advances in artificial intelligence often stem from the development of new environments that abstract real-world situations into a form where research can be done conveniently. This paper contributes such an environment based on ideas inspired by elementary Microeconomics. Agents learn to produce resources in a spatially complex world, trade them with one another, and consume those that they prefer. We show that the emergent production, consumption, and pricing behaviors respond to environmental conditions in the directions predicted by supply and demand shifts in Microeconomics. We also demonstrate settings where the agents' emergent prices for goods vary over space, reflecting the local abundance of goods. After the price disparities emerge, some agents then discover a niche of transporting goods between regions with different prevailing prices -- a profitable strategy because they can buy goods where they are cheap and sell them where they are expensive. Finally, in a series of ablation experiments, we investigate how choices in the environmental rewards, bartering actions, agent architecture, and ability to consume tradable goods can either aid or inhibit the emergence of this economic behavior. This work is part of the environment development branch of a research program that aims to build human-like artificial general intelligence through multi-agent interactions in simulated societies. By exploring which environment features are needed for the basic phenomena of elementary microeconomics to emerge automatically from learning, we arrive at an environment that differs from those studied in prior multi-agent reinforcement learning work along several dimensions. For example, the model incorporates heterogeneous tastes and physical abilities, and agents negotiate with one another as a grounded form of communication.
Graph Neural Networks (GNNs) have recently become increasingly popular due to their ability to learn complex systems of relations or interactions arising in a broad spectrum of problems ranging from biology and particle physics to social networks and recommendation systems. Despite the plethora of different models for deep learning on graphs, few approaches have been proposed thus far for dealing with graphs that present some sort of dynamic nature (e.g. evolving features or connectivity over time). In this paper, we present Temporal Graph Networks (TGNs), a generic, efficient framework for deep learning on dynamic graphs represented as sequences of timed events. Thanks to a novel combination of memory modules and graph-based operators, TGNs are able to significantly outperform previous approaches being at the same time more computationally efficient. We furthermore show that several previous models for learning on dynamic graphs can be cast as specific instances of our framework. We perform a detailed ablation study of different components of our framework and devise the best configuration that achieves state-of-the-art performance on several transductive and inductive prediction tasks for dynamic graphs.
In this paper, we introduce the Reinforced Mnemonic Reader for machine reading comprehension tasks, which enhances previous attentive readers in two aspects. First, a reattention mechanism is proposed to refine current attentions by directly accessing to past attentions that are temporally memorized in a multi-round alignment architecture, so as to avoid the problems of attention redundancy and attention deficiency. Second, a new optimization approach, called dynamic-critical reinforcement learning, is introduced to extend the standard supervised method. It always encourages to predict a more acceptable answer so as to address the convergence suppression problem occurred in traditional reinforcement learning algorithms. Extensive experiments on the Stanford Question Answering Dataset (SQuAD) show that our model achieves state-of-the-art results. Meanwhile, our model outperforms previous systems by over 6% in terms of both Exact Match and F1 metrics on two adversarial SQuAD datasets.