亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Training robot policies in simulation is becoming increasingly popular; nevertheless, a precise, reliable, and easy-to-use tactile simulator for contact-rich manipulation tasks is still missing. To close this gap, we develop TacEx -- a modular tactile simulation framework. We embed a state-of-the-art soft-body simulator for contacts named GIPC and vision-based tactile simulators Taxim and FOTS into Isaac Sim to achieve robust and plausible simulation of the visuotactile sensor GelSight Mini. We implement several Isaac Lab environments for Reinforcement Learning (RL) leveraging our TacEx simulation, including object pushing, lifting, and pole balancing. We validate that the simulation is stable and that the high-dimensional observations, such as the gel deformation and the RGB images from the GelSight camera, can be used for training. The code, videos, and additional results will be released online //sites.google.com/view/tacex.

相關內容

第30屆算法與計算國際研討會(ISAAC 2019)將于2019年12月8日至11日在中國上海舉行。該研討會旨在為算法和計算理論的研究人員提供一個論壇。官網鏈接: · Learning · Agent · 強化學習 · 多樣性 ·
2024 年 12 月 20 日

Exploration in cooperative multi-agent reinforcement learning (MARL) remains challenging for value-based agents due to the absence of an explicit policy. Existing approaches include individual exploration based on uncertainty towards the system and collective exploration through behavioral diversity among agents. However, the introduction of additional structures often leads to reduced training efficiency and infeasible integration of these methods. In this paper, we propose Adaptive exploration via Identity Recognition~(AIR), which consists of two adversarial components: a classifier that recognizes agent identities from their trajectories, and an action selector that adaptively adjusts the mode and degree of exploration. We theoretically prove that AIR can facilitate both individual and collective exploration during training, and experiments also demonstrate the efficiency and effectiveness of AIR across various tasks.

As data volumes expand rapidly, distributed machine learning has become essential for addressing the growing computational demands of modern AI systems. However, training models in distributed environments is challenging with participants hold skew, Non-Independent-Identically distributed (Non-IID) data. Low-Rank Adaptation (LoRA) offers a promising solution to this problem by personalizing low-rank updates rather than optimizing the entire model, LoRA-enabled distributed learning minimizes computational and maximize personalization for each participant. Enabling more robust and efficient training in distributed learning settings, especially in large-scale, heterogeneous systems. Despite the strengths of current state-of-the-art methods, they often require manual configuration of the initial rank, which is increasingly impractical as the number of participants grows. This manual tuning is not only time-consuming but also prone to suboptimal configurations. To address this limitation, we propose AutoRank, an adaptive rank-setting algorithm inspired by the bias-variance trade-off. AutoRank leverages the MCDA method TOPSIS to dynamically assign local ranks based on the complexity of each participant's data. By evaluating data distribution and complexity through our proposed data complexity metrics, AutoRank provides fine-grained adjustments to the rank of each participant's local LoRA model. This adaptive approach effectively mitigates the challenges of double-imbalanced, non-IID data. Experimental results demonstrate that AutoRank significantly reduces computational overhead, enhances model performance, and accelerates convergence in highly heterogeneous federated learning environments. Through its strong adaptability, AutoRank offers a scalable and flexible solution for distributed machine learning.

Understanding temporal relations and answering time-sensitive questions is crucial yet a challenging task for question-answering systems powered by large language models (LLMs). Existing approaches either update the parametric knowledge of LLMs with new facts, which is resource-intensive and often impractical, or integrate LLMs with external knowledge retrieval (i.e., retrieval-augmented generation). However, off-the-shelf retrievers often struggle to identify relevant documents that require intensive temporal reasoning. To systematically study time-sensitive question answering, we introduce the TempRAGEval benchmark, which repurposes existing datasets by incorporating temporal perturbations and gold evidence labels. As anticipated, all existing retrieval methods struggle with these temporal reasoning-intensive questions. We further propose Modular Retrieval (MRAG), a trainless framework that includes three modules: (1) Question Processing that decomposes question into a main content and a temporal constraint; (2) Retrieval and Summarization that retrieves evidence and uses LLMs to summarize according to the main content; (3) Semantic-Temporal Hybrid Ranking that scores each evidence summarization based on both semantic and temporal relevance. On TempRAGEval, MRAG significantly outperforms baseline retrievers in retrieval performance, leading to further improvements in final answer accuracy.

Automatic Heuristic Design (AHD) is an active research area due to its utility in solving complex search and NP-hard combinatorial optimization problems in the real world. The recent advancements in Large Language Models (LLMs) introduce new possibilities by coupling LLMs with evolutionary computation to automatically generate heuristics, known as LLM-based Evolutionary Program Search (LLM-EPS). While previous LLM-EPS studies obtained great performance on various tasks, there is still a gap in understanding the properties of heuristic search spaces and achieving a balance between exploration and exploitation, which is a critical factor in large heuristic search spaces. In this study, we address this gap by proposing two diversity measurement metrics and perform an analysis on previous LLM-EPS approaches, including FunSearch, EoH, and ReEvo. Results on black-box AHD problems reveal that while EoH demonstrates higher diversity than FunSearch and ReEvo, its objective score is unstable. Conversely, ReEvo's reflection mechanism yields good objective scores but fails to optimize diversity effectively. With this finding in mind, we introduce HSEvo, an adaptive LLM-EPS framework that maintains a balance between diversity and convergence with a harmony search algorithm. Through experimentation, we find that HSEvo achieved high diversity indices and good objective scores while remaining cost-effective. These results underscore the importance of balancing exploration and exploitation and understanding heuristic search spaces in designing frameworks in LLM-EPS.

Although multiview fusion has demonstrated potential in LiDAR segmentation, its dependence on computationally intensive point-based interactions, arising from the lack of fixed correspondences between views such as range view and Bird's-Eye View (BEV), hinders its practical deployment. This paper challenges the prevailing notion that multiview fusion is essential for achieving high performance. We demonstrate that significant gains can be realized by directly fusing Polar and Cartesian partitioning strategies within the BEV space. Our proposed BEV-only segmentation model leverages the inherent fixed grid correspondences between these partitioning schemes, enabling a fusion process that is orders of magnitude faster (170$\times$ speedup) than conventional point-based methods. Furthermore, our approach facilitates dense feature fusion, preserving richer contextual information compared to sparse point-based alternatives. To enhance scene understanding while maintaining inference efficiency, we also introduce a hybrid Transformer-CNN architecture. Extensive evaluation on the SemanticKITTI and nuScenes datasets provides compelling evidence that our method outperforms previous multiview fusion approaches in terms of both performance and inference speed, highlighting the potential of BEV-based fusion for LiDAR segmentation. Code is available at \url{//github.com/skyshoumeng/PC-BEV.}

Mathematical formulas serve as the means of communication between humans and nature, encapsulating the operational laws governing natural phenomena. The concise formulation of these laws is a crucial objective in scientific research and an important challenge for artificial intelligence (AI). While traditional artificial neural networks (MLP) excel at data fitting, they often yield uninterpretable black box results that hinder our understanding of the relationship between variables x and predicted values y. Moreover, the fixed network architecture in MLP often gives rise to redundancy in both network structure and parameters. To address these issues, we propose MetaSymNet, a novel neural network that dynamically adjusts its structure in real-time, allowing for both expansion and contraction. This adaptive network employs the PANGU meta function as its activation function, which is a unique type capable of evolving into various basic functions during training to compose mathematical formulas tailored to specific needs. We then evolve the neural network into a concise, interpretable mathematical expression. To evaluate MetaSymNet's performance, we compare it with four state-of-the-art symbolic regression algorithms across more than 10 public datasets comprising 222 formulas. Our experimental results demonstrate that our algorithm outperforms others consistently regardless of noise presence or absence. Furthermore, we assess MetaSymNet against MLP and SVM regarding their fitting ability and extrapolation capability, these are two essential aspects of machine learning algorithms. The findings reveal that our algorithm excels in both areas. Finally, we compared MetaSymNet with MLP using iterative pruning in network structure complexity. The results show that MetaSymNet's network structure complexity is obviously less than MLP under the same goodness of fit.

The HeartBert model is introduced with three primary objectives: reducing the need for labeled data, minimizing computational resources, and simultaneously improving performance in machine learning systems that analyze Electrocardiogram (ECG) signals. Inspired by Bidirectional Encoder Representations from Transformers (BERT) in natural language processing and enhanced with a self-supervised learning approach, the HeartBert model-built on the RoBERTa architecture-generates sophisticated embeddings tailored for ECG-based projects in the medical domain. To demonstrate the versatility, generalizability, and efficiency of the proposed model, two key downstream tasks have been selected: sleep stage detection and heartbeat classification. HeartBERT-based systems, utilizing bidirectional LSTM heads, are designed to address complex challenges. A series of practical experiments have been conducted to demonstrate the superiority and advancements of HeartBERT, particularly in terms of its ability to perform well with smaller training datasets, reduced learning parameters, and effective performance compared to rival models. The code and data are publicly available at //github.com/ecgResearch/HeartBert.

Dexterous manipulation is a critical area of robotics. In this field, teleoperation faces three key challenges: user-friendliness for novices, safety assurance, and transferability across different platforms. While collecting real robot dexterous manipulation data by teleoperation to train robots has shown impressive results on diverse tasks, due to the morphological differences between human and robot hands, it is not only hard for new users to understand the action mapping but also raises potential safety concerns during operation. To address these limitations, we introduce TelePhantom. This teleoperation system offers real-time visual feedback on robot actions based on human user inputs, with a total hardware cost of less than $1,000. TelePhantom allows the user to see a virtual robot that represents the outcome of the user's next movement. By enabling flexible switching between command visualization and actual execution, this system helps new users learn how to demonstrate quickly and safely. We demonstrate its superiority over other teleoperation systems across five tasks, emphasize its ease of use, and highlight its ease of deployment across diverse input sensors and robotic platforms. We will release our code and a deployment document on our website: //telephantom.github.io/.

The incredible development of federated learning (FL) has benefited various tasks in the domains of computer vision and natural language processing, and the existing frameworks such as TFF and FATE has made the deployment easy in real-world applications. However, federated graph learning (FGL), even though graph data are prevalent, has not been well supported due to its unique characteristics and requirements. The lack of FGL-related framework increases the efforts for accomplishing reproducible research and deploying in real-world applications. Motivated by such strong demand, in this paper, we first discuss the challenges in creating an easy-to-use FGL package and accordingly present our implemented package FederatedScope-GNN (FS-G), which provides (1) a unified view for modularizing and expressing FGL algorithms; (2) comprehensive DataZoo and ModelZoo for out-of-the-box FGL capability; (3) an efficient model auto-tuning component; and (4) off-the-shelf privacy attack and defense abilities. We validate the effectiveness of FS-G by conducting extensive experiments, which simultaneously gains many valuable insights about FGL for the community. Moreover, we employ FS-G to serve the FGL application in real-world E-commerce scenarios, where the attained improvements indicate great potential business benefits. We publicly release FS-G, as submodules of FederatedScope, at //github.com/alibaba/FederatedScope to promote FGL's research and enable broad applications that would otherwise be infeasible due to the lack of a dedicated package.

Recurrent neural nets (RNN) and convolutional neural nets (CNN) are widely used on NLP tasks to capture the long-term and local dependencies, respectively. Attention mechanisms have recently attracted enormous interest due to their highly parallelizable computation, significantly less training time, and flexibility in modeling dependencies. We propose a novel attention mechanism in which the attention between elements from input sequence(s) is directional and multi-dimensional (i.e., feature-wise). A light-weight neural net, "Directional Self-Attention Network (DiSAN)", is then proposed to learn sentence embedding, based solely on the proposed attention without any RNN/CNN structure. DiSAN is only composed of a directional self-attention with temporal order encoded, followed by a multi-dimensional attention that compresses the sequence into a vector representation. Despite its simple form, DiSAN outperforms complicated RNN models on both prediction quality and time efficiency. It achieves the best test accuracy among all sentence encoding methods and improves the most recent best result by 1.02% on the Stanford Natural Language Inference (SNLI) dataset, and shows state-of-the-art test accuracy on the Stanford Sentiment Treebank (SST), Multi-Genre natural language inference (MultiNLI), Sentences Involving Compositional Knowledge (SICK), Customer Review, MPQA, TREC question-type classification and Subjectivity (SUBJ) datasets.

北京阿比特科技有限公司