亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Many applications, e.g., in shared mobility, require coordinating a large number of agents. Mean-field reinforcement learning addresses the resulting scalability challenge by optimizing the policy of a representative agent interacting with the infinite population of identical agents instead of considering individual pairwise interactions. In this paper, we address an important generalization where there exist global constraints on the distribution of agents (e.g., requiring capacity constraints or minimum coverage requirements to be met). We propose Safe-M$^3$-UCRL, the first model-based mean-field reinforcement learning algorithm that attains safe policies even in the case of unknown transitions. As a key ingredient, it uses epistemic uncertainty in the transition model within a log-barrier approach to ensure pessimistic constraints satisfaction with high probability. Beyond the synthetic swarm motion benchmark, we showcase Safe-M$^3$-UCRL on the vehicle repositioning problem faced by many shared mobility operators and evaluate its performance through simulations built on vehicle trajectory data from a service provider in Shenzhen. Our algorithm effectively meets the demand in critical areas while ensuring service accessibility in regions with low demand.

相關內容

Despite the success of reinforcement learning from human feedback (RLHF) in aligning language models with human values, reward hacking, also termed reward overoptimization, remains a critical challenge, which primarily stems from limitations in reward modeling, i.e., generalizability of the reward model and inconsistency in the preference dataset. In this work, we tackle this problem from an information theoretic-perspective, and propose a generalizable and robust framework for reward modeling, namely InfoRM, by introducing a variational information bottleneck objective to filter out irrelevant information and developing a mechanism for model complexity modulation. Notably, we further identify a correlation between overoptimization and outliers in the latent space, establishing InfoRM as a promising tool for detecting reward overoptimization. Inspired by this finding, we propose the Integrated Cluster Deviation Score (ICDS), which quantifies deviations in the latent space, as an indicator of reward overoptimization to facilitate the development of online mitigation strategies. Extensive experiments on a wide range of settings and model scales (70M, 440M, 1.4B, and 7B) support the effectiveness of InfoRM. Further analyses reveal that InfoRM's overoptimization detection mechanism is effective, potentially signifying a notable advancement in the field of RLHF. Code will be released upon acceptance.

This study tackles the challenges of adversarial corruption in model-based reinforcement learning (RL), where the transition dynamics can be corrupted by an adversary. Existing studies on corruption-robust RL mostly focus on the setting of model-free RL, where robust least-square regression is often employed for value function estimation. However, these techniques cannot be directly applied to model-based RL. In this paper, we focus on model-based RL and take the maximum likelihood estimation (MLE) approach to learn transition model. Our work encompasses both online and offline settings. In the online setting, we introduce an algorithm called corruption-robust optimistic MLE (CR-OMLE), which leverages total-variation (TV)-based information ratios as uncertainty weights for MLE. We prove that CR-OMLE achieves a regret of $\tilde{\mathcal{O}}(\sqrt{T} + C)$, where $C$ denotes the cumulative corruption level after $T$ episodes. We also prove a lower bound to show that the additive dependence on $C$ is optimal. We extend our weighting technique to the offline setting, and propose an algorithm named corruption-robust pessimistic MLE (CR-PMLE). Under a uniform coverage condition, CR-PMLE exhibits suboptimality worsened by $\mathcal{O}(C/n)$, nearly matching the lower bound. To the best of our knowledge, this is the first work on corruption-robust model-based RL algorithms with provable guarantees.

We study reward-free reinforcement learning (RL) with linear function approximation, where the agent works in two phases: (1) in the exploration phase, the agent interacts with the environment but cannot access the reward; and (2) in the planning phase, the agent is given a reward function and is expected to find a near-optimal policy based on samples collected in the exploration phase. The sample complexities of existing reward-free algorithms have a polynomial dependence on the planning horizon, which makes them intractable for long planning horizon RL problems. In this paper, we propose a new reward-free algorithm for learning linear mixture Markov decision processes (MDPs), where the transition probability can be parameterized as a linear combination of known feature mappings. At the core of our algorithm is uncertainty-weighted value-targeted regression with exploration-driven pseudo-reward and a high-order moment estimator for the aleatoric and epistemic uncertainties. When the total reward is bounded by $1$, we show that our algorithm only needs to explore $\tilde O( d^2\varepsilon^{-2})$ episodes to find an $\varepsilon$-optimal policy, where $d$ is the dimension of the feature mapping. The sample complexity of our algorithm only has a polylogarithmic dependence on the planning horizon and therefore is "horizon-free". In addition, we provide an $\Omega(d^2\varepsilon^{-2})$ sample complexity lower bound, which matches the sample complexity of our algorithm up to logarithmic factors, suggesting that our algorithm is optimal.

In task-oriented dialogue, a system often needs to follow a sequence of actions, called a workflow, that complies with a set of guidelines in order to complete a task. In this paper, we propose the novel problem of multi-step workflow action prediction, in which the system predicts multiple future workflow actions. Accurate prediction of multiple steps allows for multi-turn automation, which can free up time to focus on more complex tasks. We propose three modeling approaches that are simple to implement yet lead to more action automation: 1) fine-tuning on a training dataset, 2) few-shot in-context learning leveraging retrieval and large language model prompting, and 3) zero-shot graph traversal, which aggregates historical action sequences into a graph for prediction. We show that multi-step action prediction produces features that improve accuracy on downstream dialogue tasks like predicting task success, and can increase automation of steps by 20% without requiring as much feedback from a human overseeing the system.

As synthetic data becomes higher quality and proliferates on the internet, machine learning models are increasingly trained on a mix of human- and machine-generated data. Despite the successful stories of using synthetic data for representation learning, using synthetic data for generative model training creates "self-consuming loops" which may lead to training instability or even collapse, unless certain conditions are met. Our paper aims to stabilize self-consuming generative model training. Our theoretical results demonstrate that by introducing an idealized correction function, which maps a data point to be more likely under the true data distribution, self-consuming loops can be made exponentially more stable. We then propose self-correction functions, which rely on expert knowledge (e.g. the laws of physics programmed in a simulator), and aim to approximate the idealized corrector automatically and at scale. We empirically validate the effectiveness of self-correcting self-consuming loops on the challenging human motion synthesis task, and observe that it successfully avoids model collapse, even when the ratio of synthetic data to real data is as high as 100%.

We introduce fair-density parity-check (FDPC) codes targeting high-rate applications. In particular, we start with a base parity-check matrix $H_b$ of dimension $2 \sqrt{n} \times n$, where $n$ is the code block length, and the number of ones in each row and column of $H_b$ is equal to $\sqrt{n}$ and $2$, respectively. We propose a deterministic combinatorial method for picking the base matrix $H_b$, assuming $n=4t^2$ for some integer $t \geq 2$. We then extend this by obtaining permuted versions of $H_b$ (e.g., via random permutations of its columns) and stacking them on top of each other leading to codes of dimension $k \geq n-2s\sqrt{n}+s$, for some $s \geq 2$, referred to as order-$s$ FDPC codes. We propose methods to explicitly characterize and bound the weight distribution of the new codes and utilize them to derive union-type approximate upper bounds on their error probability under Maximum Likelihood (ML) decoding. For the binary erasure channel (BEC), we demonstrate that the approximate ML bound of FDPC codes closely follows the random coding upper bound (RCU) for a wide range of channel parameters. Also, remarkably, FDPC codes, under the low-complexity min-sum decoder, improve upon 5G-LDPC codes for transmission over the binary-input additive white Gaussian noise (B-AWGN) channel by almost 0.5dB (for $n=1024$, and rate $=0.878$). Furthermore, we propose a new decoder as a combination of weighted min-sum message-passing (MP) decoding algorithm together with a new progressive list (PL) decoding component, referred to as the MP-PL decoder, to further boost the performance of FDPC codes. This paper opens new avenues for a fresh investigation of new code constructions and decoding algorithms in high-rate regimes suitable for ultra-high throughput (high-frequency/optical) applications.

We present a distributed quasi-Newton (DQN) method, which enables a group of agents to compute an optimal solution of a separable multi-agent optimization problem locally using an approximation of the curvature of the aggregate objective function. Each agent computes a descent direction from its local estimate of the aggregate Hessian, obtained from quasi-Newton approximation schemes using the gradient of its local objective function. Moreover, we introduce a distributed quasi-Newton method for equality-constrained optimization (EC-DQN), where each agent takes Karush-Kuhn-Tucker-like update steps to compute an optimal solution. In our algorithms, each agent communicates with its one-hop neighbors over a peer-to-peer communication network to compute a common solution. We prove convergence of our algorithms to a stationary point of the optimization problem. In addition, we demonstrate the competitive empirical convergence of our algorithm in both well-conditioned and ill-conditioned optimization problems, in terms of the computation time and communication cost incurred by each agent for convergence, compared to existing distributed first-order and second-order methods. Particularly, in ill-conditioned problems, our algorithms achieve a faster computation time for convergence, while requiring a lower communication cost, across a range of communication networks with different degrees of connectedness, by leveraging information on the curvature of the problem.

Recent advances in real-world applications of reinforcement learning (RL) have relied on the ability to accurately simulate systems at scale. However, domains such as fluid dynamical systems exhibit complex dynamic phenomena that are hard to simulate at high integration rates, limiting the direct application of modern deep RL algorithms to often expensive or safety critical hardware. In this work, we introduce "Box o Flows", a novel benchtop experimental control system for systematically evaluating RL algorithms in dynamic real-world scenarios. We describe the key components of the Box o Flows, and through a series of experiments demonstrate how state-of-the-art model-free RL algorithms can synthesize a variety of complex behaviors via simple reward specifications. Furthermore, we explore the role of offline RL in data-efficient hypothesis testing by reusing past experiences. We believe that the insights gained from this preliminary study and the availability of systems like the Box o Flows support the way forward for developing systematic RL algorithms that can be generally applied to complex, dynamical systems. Supplementary material and videos of experiments are available at //sites.google.com/view/box-o-flows/home.

Knowledge graphs (KGs) serve as useful resources for various natural language processing applications. Previous KG completion approaches require a large number of training instances (i.e., head-tail entity pairs) for every relation. The real case is that for most of the relations, very few entity pairs are available. Existing work of one-shot learning limits method generalizability for few-shot scenarios and does not fully use the supervisory information; however, few-shot KG completion has not been well studied yet. In this work, we propose a novel few-shot relation learning model (FSRL) that aims at discovering facts of new relations with few-shot references. FSRL can effectively capture knowledge from heterogeneous graph structure, aggregate representations of few-shot references, and match similar entity pairs of reference set for every relation. Extensive experiments on two public datasets demonstrate that FSRL outperforms the state-of-the-art.

This paper presents a new multi-objective deep reinforcement learning (MODRL) framework based on deep Q-networks. We propose the use of linear and non-linear methods to develop the MODRL framework that includes both single-policy and multi-policy strategies. The experimental results on two benchmark problems including the two-objective deep sea treasure environment and the three-objective mountain car problem indicate that the proposed framework is able to converge to the optimal Pareto solutions effectively. The proposed framework is generic, which allows implementation of different deep reinforcement learning algorithms in different complex environments. This therefore overcomes many difficulties involved with standard multi-objective reinforcement learning (MORL) methods existing in the current literature. The framework creates a platform as a testbed environment to develop methods for solving various problems associated with the current MORL. Details of the framework implementation can be referred to //www.deakin.edu.au/~thanhthi/drl.htm.

北京阿比特科技有限公司