亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

We present SplatFace, a novel Gaussian splatting framework designed for 3D human face reconstruction without reliance on accurate pre-determined geometry. Our method is designed to simultaneously deliver both high-quality novel view rendering and accurate 3D mesh reconstructions. We incorporate a generic 3D Morphable Model (3DMM) to provide a surface geometric structure, making it possible to reconstruct faces with a limited set of input images. We introduce a joint optimization strategy that refines both the Gaussians and the morphable surface through a synergistic non-rigid alignment process. A novel distance metric, splat-to-surface, is proposed to improve alignment by considering both the Gaussian position and covariance. The surface information is also utilized to incorporate a world-space densification process, resulting in superior reconstruction quality. Our experimental analysis demonstrates that the proposed method is competitive with both other Gaussian splatting techniques in novel view synthesis and other 3D reconstruction methods in producing 3D face meshes with high geometric precision.

相關內容

Surface 是微軟公司( )旗下一系(xi)列(lie)使(shi)用(yong) Windows 10(早(zao)期為 Windows 8.X)操(cao)作系(xi)統的(de)電腦(nao)產品(pin),目前有 Surface、Surface Pro 和 Surface Book 三個系(xi)列(lie)。 2012 年 6 月 18 日,初代(dai) Surface Pro/RT 由時任微軟 CEO 史蒂(di)夫·鮑爾默發(fa)布(bu)于(yu)在(zai)洛杉(shan)磯舉(ju)行的(de)記者會,2012 年 10 月 26 日上市(shi)銷售。

Domain generalization~(DG) aims at solving distribution shift problems in various scenes. Existing approaches are based on Convolution Neural Networks (CNNs) or Vision Transformers (ViTs), which suffer from limited receptive fields or quadratic complexities issues. Mamba, as an emerging state space model (SSM), possesses superior linear complexity and global receptive fields. Despite this, it can hardly be applied to DG to address distribution shifts, due to the hidden state issues and inappropriate scan mechanisms. In this paper, we propose a novel framework for DG, named DGMamba, that excels in strong generalizability toward unseen domains and meanwhile has the advantages of global receptive fields, and efficient linear complexity. Our DGMamba compromises two core components: Hidden State Suppressing~(HSS) and Semantic-aware Patch refining~(SPR). In particular, HSS is introduced to mitigate the influence of hidden states associated with domain-specific features during output prediction. SPR strives to encourage the model to concentrate more on objects rather than context, consisting of two designs: Prior-Free Scanning~(PFS), and Domain Context Interchange~(DCI). Concretely, PFS aims to shuffle the non-semantic patches within images, creating more flexible and effective sequences from images, and DCI is designed to regularize Mamba with the combination of mismatched non-semantic and semantic information by fusing patches among domains. Extensive experiments on four commonly used DG benchmarks demonstrate that the proposed DGMamba achieves remarkably superior results to state-of-the-art models. The code will be made publicly available.

Combining face swapping with lip synchronization technology offers a cost-effective solution for customized talking face generation. However, directly cascading existing models together tends to introduce significant interference between tasks and reduce video clarity because the interaction space is limited to the low-level semantic RGB space. To address this issue, we propose an innovative unified framework, SwapTalk, which accomplishes both face swapping and lip synchronization tasks in the same latent space. Referring to recent work on face generation, we choose the VQ-embedding space due to its excellent editability and fidelity performance. To enhance the framework's generalization capabilities for unseen identities, we incorporate identity loss during the training of the face swapping module. Additionally, we introduce expert discriminator supervision within the latent space during the training of the lip synchronization module to elevate synchronization quality. In the evaluation phase, previous studies primarily focused on the self-reconstruction of lip movements in synchronous audio-visual videos. To better approximate real-world applications, we expand the evaluation scope to asynchronous audio-video scenarios. Furthermore, we introduce a novel identity consistency metric to more comprehensively assess the identity consistency over time series in generated facial videos. Experimental results on the HDTF demonstrate that our method significantly surpasses existing techniques in video quality, lip synchronization accuracy, face swapping fidelity, and identity consistency. Our demo is available at //swaptalk.cc.

Speaker extraction and diarization are two enabling techniques for real-world speech applications. Speaker extraction aims to extract a target speaker's voice from a speech mixture, while speaker diarization demarcates speech segments by speaker, annotating `who spoke when'. Previous studies have typically treated the two tasks independently. In practical applications, it is more meaningful to have knowledge about `who spoke what and when', which is captured by the two tasks. The two tasks share a similar objective of disentangling speakers. Speaker extraction operates in the frequency domain, whereas diarization is in the temporal domain. It is logical to believe that speaker activities obtained from speaker diarization can benefit speaker extraction, while the extracted speech offers more accurate speaker activity detection than the speech mixture. In this paper, we propose a unified model called Universal Speaker Extraction and Diarization (USED) to address output inconsistency and scenario mismatch issues. It is designed to manage speech mixture with varying overlap ratios and variable number of speakers. We show that the USED model significantly outperforms the competitive baselines for speaker extraction and diarization tasks on LibriMix and SparseLibriMix datasets. We further validate the diarization performance on CALLHOME, a dataset based on real recordings, and experimental results indicate that our model surpasses recently proposed approaches.

Realizing unified monocular 3D object detection, including both indoor and outdoor scenes, holds great importance in applications like robot navigation. However, involving various scenarios of data to train models poses challenges due to their significantly different characteristics, e.g., diverse geometry properties and heterogeneous domain distributions. To address these challenges, we build a detector based on the bird's-eye-view (BEV) detection paradigm, where the explicit feature projection is beneficial to addressing the geometry learning ambiguity when employing multiple scenarios of data to train detectors. Then, we split the classical BEV detection architecture into two stages and propose an uneven BEV grid design to handle the convergence instability caused by the aforementioned challenges. Moreover, we develop a sparse BEV feature projection strategy to reduce computational cost and a unified domain alignment method to handle heterogeneous domains. Combining these techniques, a unified detector UniMODE is derived, which surpasses the previous state-of-the-art on the challenging Omni3D dataset (a large-scale dataset including both indoor and outdoor scenes) by 4.9% AP_3D, revealing the first successful generalization of a BEV detector to unified 3D object detection.

Large language models (LLMs) usually fall short on information extraction (IE) tasks and struggle to follow the complex instructions of IE tasks. This primarily arises from LLMs not being aligned with humans, as mainstream alignment datasets typically do not include IE data. In this paper, we introduce ADELIE (Aligning large language moDELs on Information Extraction), an aligned LLM that effectively solves various IE tasks, including closed IE, open IE, and on-demand IE. We first collect and construct a high-quality alignment corpus IEInstruct for IE. Then we train ADELIE_SFT using instruction tuning on IEInstruct. We further train ADELIE_SFT with direct preference optimization (DPO) objective, resulting in ADELIE_DPO. Extensive experiments on various held-out IE datasets demonstrate that our models (ADELIE_SFT and ADELIE_DPO) achieve state-of-the-art (SoTA) performance among open-source models. We further explore the general capabilities of ADELIE, and experimental results reveal that their general capabilities do not exhibit a noticeable decline. We will release the code, data, and models to facilitate further research.

Evaluating free-text explanations is a multifaceted, subjective, and labor-intensive task. Large language models (LLMs) present an appealing alternative due to their potential for consistency, scalability, and cost-efficiency. In this work, we present ACORN, a new dataset of 3,500 free-text explanations and aspect-wise quality ratings, and use it to gain insights into how LLMs evaluate explanations. We observed that replacing one of the human ratings sometimes maintained, but more often lowered the inter-annotator agreement across different settings and quality aspects, suggesting that their judgments are not always consistent with human raters. We further quantified this difference by comparing the correlation between LLM-generated ratings with majority-voted human ratings across different quality aspects. With the best system, Spearman's rank correlation ranged between 0.53 to 0.95, averaging 0.72 across aspects, indicating moderately high but imperfect alignment. Finally, we considered the alternative of using an LLM as an additional rater when human raters are scarce, and measured the correlation between majority-voted labels with a limited human pool and LLMs as an additional rater, compared to the original gold labels. While GPT-4 improved the outcome when there were only two human raters, in all other observed cases, LLMs were neutral to detrimental when there were three or more human raters. We publicly release the dataset to support future improvements in LLM-in-the-loop evaluation here: //github.com/a-brassard/ACORN.

We present Emu, a Transformer-based multimodal foundation model, which can seamlessly generate images and texts in multimodal context. This omnivore model can take in any single-modality or multimodal data input indiscriminately (e.g., interleaved image, text and video) through a one-model-for-all autoregressive training process. First, visual signals are encoded into embeddings, and together with text tokens form an interleaved input sequence. Emu is then end-to-end trained with a unified objective of classifying the next text token or regressing the next visual embedding in the multimodal sequence. This versatile multimodality empowers the exploration of diverse pretraining data sources at scale, such as videos with interleaved frames and text, webpages with interleaved images and text, as well as web-scale image-text pairs and video-text pairs. Emu can serve as a generalist multimodal interface for both image-to-text and text-to-image tasks, and supports in-context image and text generation. Across a broad range of zero-shot/few-shot tasks including image captioning, visual question answering, video question answering and text-to-image generation, Emu demonstrates superb performance compared to state-of-the-art large multimodal models. Extended capabilities such as multimodal assistants via instruction tuning are also demonstrated with impressive performance.

This paper explores the intersection of technology and sleep pattern comprehension, presenting a cutting-edge two-stage framework that harnesses the power of Large Language Models (LLMs). The primary objective is to deliver precise sleep predictions paired with actionable feedback, addressing the limitations of existing solutions. This innovative approach involves leveraging the GLOBEM dataset alongside synthetic data generated by LLMs. The results highlight significant improvements, underlining the efficacy of merging advanced machine-learning techniques with a user-centric design ethos. Through this exploration, we bridge the gap between technological sophistication and user-friendly design, ensuring that our framework yields accurate predictions and translates them into actionable insights.

Pretrained Optimization Models (POMs) leverage knowledge gained from optimizing various tasks, providing efficient solutions for new optimization challenges through direct usage or fine-tuning. Despite the inefficiencies and limited generalization abilities observed in current POMs, our proposed model, the general pre-trained optimization model (GPOM), addresses these shortcomings. GPOM constructs a population-based pretrained Black-Box Optimization (BBO) model tailored for continuous optimization. Evaluation on the BBOB benchmark and two robot control tasks demonstrates that GPOM outperforms other pretrained BBO models significantly, especially for high-dimensional tasks. Its direct optimization performance exceeds that of state-of-the-art evolutionary algorithms and POMs. Furthermore, GPOM exhibits robust generalization capabilities across diverse task distributions, dimensions, population sizes, and optimization horizons.

To provide more accurate, diverse, and explainable recommendation, it is compulsory to go beyond modeling user-item interactions and take side information into account. Traditional methods like factorization machine (FM) cast it as a supervised learning problem, which assumes each interaction as an independent instance with side information encoded. Due to the overlook of the relations among instances or items (e.g., the director of a movie is also an actor of another movie), these methods are insufficient to distill the collaborative signal from the collective behaviors of users. In this work, we investigate the utility of knowledge graph (KG), which breaks down the independent interaction assumption by linking items with their attributes. We argue that in such a hybrid structure of KG and user-item graph, high-order relations --- which connect two items with one or multiple linked attributes --- are an essential factor for successful recommendation. We propose a new method named Knowledge Graph Attention Network (KGAT) which explicitly models the high-order connectivities in KG in an end-to-end fashion. It recursively propagates the embeddings from a node's neighbors (which can be users, items, or attributes) to refine the node's embedding, and employs an attention mechanism to discriminate the importance of the neighbors. Our KGAT is conceptually advantageous to existing KG-based recommendation methods, which either exploit high-order relations by extracting paths or implicitly modeling them with regularization. Empirical results on three public benchmarks show that KGAT significantly outperforms state-of-the-art methods like Neural FM and RippleNet. Further studies verify the efficacy of embedding propagation for high-order relation modeling and the interpretability benefits brought by the attention mechanism.

北京阿比特科技有限公司