亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Quantum Key Distribution (QKD) enables secure communications via the exchange of cryptographic keys exploiting the properties of quantum mechanics. Nowadays the related technology is mature enough for production systems, thus field deployments of QKD networks are expected to appear in the near future, starting from local/metropolitan settings, where edge computing is already a thriving reality. In this paper, we investigate the interplay of resource allocation in the QKD network vs. edge nodes, which creates unique research challenges. After modeling mathematically the problem, we propose practical online policies for admitting edge application requests, which also select the edge node for processing and the path in the QKD network. Our simulation results provide initial insights into this emerging topic and lead the way to upcoming studies on the subject.

相關內容

We investigate a framework for binary image denoising via restricted Boltzmann machines (RBMs) that introduces a denoising objective in quadratic unconstrained binary optimization (QUBO) form and is well-suited for quantum annealing. The denoising objective is attained by balancing the distribution learned by a trained RBM with a penalty term for derivations from the noisy image. We derive the statistically optimal choice of the penalty parameter assuming the target distribution has been well-approximated, and further suggest an empirically supported modification to make the method robust to that idealistic assumption. We also show under additional assumptions that the denoised images attained by our method are, in expectation, strictly closer to the noise-free images than the noisy images are. While we frame the model as an image denoising model, it can be applied to any binary data. As the QUBO formulation is well-suited for implementation on quantum annealers, we test the model on a D-Wave Advantage machine, and also test on data too large for current quantum annealers by approximating QUBO solutions through classical heuristics.

Augmented Reality (AR) is expected to become a pervasive component in enabling shared virtual experiences. In order to facilitate collaboration among multiple users, it is crucial for multi-user AR applications to establish a consensus on the "shared state" of the virtual world and its augmentations, through which they interact within augmented reality spaces. Current methods to create and access shared state collect sensor data from devices (e.g., camera images), process them, and integrate them into the shared state. However, this process introduces new vulnerabilities and opportunities for attacks. Maliciously writing false data to "poison" the shared state is a major concern for the security of the downstream victims that depend on it. Another type of vulnerability arises when reading the shared state; by providing false inputs, an attacker can view hologram augmentations at locations they are not allowed to access. In this work, we demonstrate a series of novel attacks on multiple AR frameworks with shared states, focusing on three publicly-accessible frameworks. We show that these frameworks, while using different underlying implementations, scopes, and mechanisms to read from and write to the shared state, have shared vulnerability to a unified threat model. Our evaluation of these state-of-art AR applications demonstrates reliable attacks both on updating and accessing shared state across the different systems. To defend against such threats, we discuss a number of potential mitigation strategies that can help enhance the security of multi-user AR applications.

Long-term outcomes of experimental evaluations are necessarily observed after long delays. We develop semiparametric methods for combining the short-term outcomes of experiments with observational measurements of short-term and long-term outcomes, in order to estimate long-term treatment effects. We characterize semiparametric efficiency bounds for various instances of this problem. These calculations facilitate the construction of several estimators. We analyze the finite-sample performance of these estimators with a simulation calibrated to data from an evaluation of the long-term effects of a poverty alleviation program.

Physics-informed neural networks (PINNs) have been popularized as a deep learning framework that can seamlessly synthesize observational data and partial differential equation (PDE) constraints. Their practical effectiveness however can be hampered by training pathologies, but also oftentimes by poor choices made by users who lack deep learning expertise. In this paper we present a series of best practices that can significantly improve the training efficiency and overall accuracy of PINNs. We also put forth a series of challenging benchmark problems that highlight some of the most prominent difficulties in training PINNs, and present comprehensive and fully reproducible ablation studies that demonstrate how different architecture choices and training strategies affect the test accuracy of the resulting models. We show that the methods and guiding principles put forth in this study lead to state-of-the-art results and provide strong baselines that future studies should use for comparison purposes. To this end, we also release a highly optimized library in JAX that can be used to reproduce all results reported in this paper, enable future research studies, as well as facilitate easy adaptation to new use-case scenarios.

Deep neural networks (DNNs) are becoming increasingly important components of software, and are considered the state-of-the-art solution for a number of problems, such as image recognition. However, DNNs are far from infallible, and incorrect behavior of DNNs can have disastrous real-world consequences. This paper addresses the problem of architecture-preserving V-polytope provable repair of DNNs. A V-polytope defines a convex bounded polytope using its vertex representation. V-polytope provable repair guarantees that the repaired DNN satisfies the given specification on the infinite set of points in the given V-polytope. An architecture-preserving repair only modifies the parameters of the DNN, without modifying its architecture. The repair has the flexibility to modify multiple layers of the DNN, and runs in polynomial time. It supports DNNs with activation functions that have some linear pieces, as well as fully-connected, convolutional, pooling and residual layers. To the best our knowledge, this is the first provable repair approach that has all of these features. We implement our approach in a tool called APRNN. Using MNIST, ImageNet, and ACAS Xu DNNs, we show that it has better efficiency, scalability, and generalization compared to PRDNN and REASSURE, prior provable repair methods that are not architecture preserving.

The emergence of new communication technologies allows us to expand our understanding of distributed control and consider collaborative decision-making paradigms. With collaborative algorithms, certain local decision-making entities (or agents) are enabled to communicate and collaborate on their actions with one another to attain better system behavior. By limiting the amount of communication, these algorithms exist somewhere between centralized and fully distributed approaches. To understand the possible benefits of this inter-agent collaboration, we model a multi-agent system as a common-interest game in which groups of agents can collaborate on their actions to jointly increase the system welfare. We specifically consider $k$-strong Nash equilibria as the emergent behavior of these systems and address how well these states approximate the system optimal, formalized by the $k$-strong price of anarchy ratio. Our main contributions are in generating tight bounds on the $k$-strong price of anarchy in finite resource allocation games as the solution to a tractable linear program. By varying $k$ --the maximum size of a collaborative coalition--we observe exactly how much performance is gained from inter-agent collaboration. To investigate further opportunities for improvement, we generate upper bounds on the maximum attainable $k$-strong price of anarchy when the agents' utility function can be designed.

The Social Internet of Things (SIoT) enables interconnected smart devices to share data and services, opening up opportunities for personalized service recommendations. However, existing research often overlooks crucial aspects that can enhance the accuracy and relevance of recommendations in the SIoT context. Specifically, existing techniques tend to consider the extraction of social relationships between devices and neglect the contextual presentation of service reviews. This study aims to address these gaps by exploring the contextual representation of each device-service pair. Firstly, we propose a latent features combination technique that can capture latent feature interactions, by aggregating the device-device relationships within the SIoT. Then, we leverage Factorization Machines to model higher-order feature interactions specific to each SIoT device-service pair to accomplish accurate rating prediction. Finally, we propose a service recommendation framework for SIoT based on review aggregation and feature learning processes. The experimental evaluation demonstrates the framework's effectiveness in improving service recommendation accuracy and relevance.

The Pretrained Foundation Models (PFMs) are regarded as the foundation for various downstream tasks with different data modalities. A pretrained foundation model, such as BERT, GPT-3, MAE, DALLE-E, and ChatGPT, is trained on large-scale data which provides a reasonable parameter initialization for a wide range of downstream applications. The idea of pretraining behind PFMs plays an important role in the application of large models. Different from previous methods that apply convolution and recurrent modules for feature extractions, the generative pre-training (GPT) method applies Transformer as the feature extractor and is trained on large datasets with an autoregressive paradigm. Similarly, the BERT apples transformers to train on large datasets as a contextual language model. Recently, the ChatGPT shows promising success on large language models, which applies an autoregressive language model with zero shot or few show prompting. With the extraordinary success of PFMs, AI has made waves in a variety of fields over the past few years. Considerable methods, datasets, and evaluation metrics have been proposed in the literature, the need is raising for an updated survey. This study provides a comprehensive review of recent research advancements, current and future challenges, and opportunities for PFMs in text, image, graph, as well as other data modalities. We first review the basic components and existing pretraining in natural language processing, computer vision, and graph learning. We then discuss other advanced PFMs for other data modalities and unified PFMs considering the data quality and quantity. Besides, we discuss relevant research about the fundamentals of the PFM, including model efficiency and compression, security, and privacy. Finally, we lay out key implications, future research directions, challenges, and open problems.

Multimodality Representation Learning, as a technique of learning to embed information from different modalities and their correlations, has achieved remarkable success on a variety of applications, such as Visual Question Answering (VQA), Natural Language for Visual Reasoning (NLVR), and Vision Language Retrieval (VLR). Among these applications, cross-modal interaction and complementary information from different modalities are crucial for advanced models to perform any multimodal task, e.g., understand, recognize, retrieve, or generate optimally. Researchers have proposed diverse methods to address these tasks. The different variants of transformer-based architectures performed extraordinarily on multiple modalities. This survey presents the comprehensive literature on the evolution and enhancement of deep learning multimodal architectures to deal with textual, visual and audio features for diverse cross-modal and modern multimodal tasks. This study summarizes the (i) recent task-specific deep learning methodologies, (ii) the pretraining types and multimodal pretraining objectives, (iii) from state-of-the-art pretrained multimodal approaches to unifying architectures, and (iv) multimodal task categories and possible future improvements that can be devised for better multimodal learning. Moreover, we prepare a dataset section for new researchers that covers most of the benchmarks for pretraining and finetuning. Finally, major challenges, gaps, and potential research topics are explored. A constantly-updated paperlist related to our survey is maintained at //github.com/marslanm/multimodality-representation-learning.

Deep neural networks (DNNs) have achieved unprecedented success in the field of artificial intelligence (AI), including computer vision, natural language processing and speech recognition. However, their superior performance comes at the considerable cost of computational complexity, which greatly hinders their applications in many resource-constrained devices, such as mobile phones and Internet of Things (IoT) devices. Therefore, methods and techniques that are able to lift the efficiency bottleneck while preserving the high accuracy of DNNs are in great demand in order to enable numerous edge AI applications. This paper provides an overview of efficient deep learning methods, systems and applications. We start from introducing popular model compression methods, including pruning, factorization, quantization as well as compact model design. To reduce the large design cost of these manual solutions, we discuss the AutoML framework for each of them, such as neural architecture search (NAS) and automated pruning and quantization. We then cover efficient on-device training to enable user customization based on the local data on mobile devices. Apart from general acceleration techniques, we also showcase several task-specific accelerations for point cloud, video and natural language processing by exploiting their spatial sparsity and temporal/token redundancy. Finally, to support all these algorithmic advancements, we introduce the efficient deep learning system design from both software and hardware perspectives.

北京阿比特科技有限公司