The concept of image similarity is ambiguous, and images can be similar in one context and not in another. This ambiguity motivates the creation of metrics for specific contexts. This work explores the ability of deep perceptual similarity (DPS) metrics to adapt to a given context. DPS metrics use the deep features of neural networks for comparing images. These metrics have been successful on datasets that leverage the average human perception in limited settings. But the question remains if they could be adapted to specific similarity contexts. No single metric can suit all similarity contexts, and previous rule-based metrics are labor-intensive to rewrite for new contexts. On the other hand, DPS metrics use neural networks that might be retrained for each context. However, retraining networks takes resources and might ruin performance on previous tasks. This work examines the adaptability of DPS metrics by training ImageNet pretrained CNNs to measure similarity according to given contexts. Contexts are created by randomly ranking six image distortions. Distortions later in the ranking are considered more disruptive to similarity when applied to an image for that context. This also gives insight into whether the pretrained features capture different similarity contexts. The adapted metrics are evaluated on a perceptual similarity dataset to evaluate if adapting to a ranking affects their prior performance. The findings show that DPS metrics can be adapted with high performance. While the adapted metrics have difficulties with the same contexts as baselines, performance is improved in 99% of cases. Finally, it is shown that the adaption is not significantly detrimental to prior performance on perceptual similarity. The implementation of this work is available online: //github.com/LTU-Machine-Learning/Analysis-of-Deep-Perceptual-Loss-Networks
This paper considers the learning of logical (Boolean) functions with focus on the generalization on the unseen (GOTU) setting, a strong case of out-of-distribution generalization. This is motivated by the fact that the rich combinatorial nature of data in certain reasoning tasks (e.g., arithmetic/logic) makes representative data sampling challenging, and learning successfully under GOTU gives a first vignette of an 'extrapolating' or 'reasoning' learner. We then study how different network architectures trained by (S)GD perform under GOTU and provide both theoretical and experimental evidence that for a class of network models including instances of Transformers, random features models, and diagonal linear networks, a min-degree-interpolator is learned on the unseen. We also provide evidence that other instances with larger learning rates or mean-field networks reach leaky min-degree solutions. These findings lead to two implications: (1) we provide an explanation to the length generalization problem (e.g., Anil et al. 2022); (2) we introduce a curriculum learning algorithm called Degree-Curriculum that learns monomials more efficiently by incrementing supports.
The widespread diffusion of connected smart devices has contributed to the rapid expansion and evolution of the Internet at its edge. Personal mobile devices interact with other smart objects in their surroundings, adapting behavior based on rapidly changing user context. The ability of mobile devices to process this data locally is crucial for quick adaptation. This can be achieved through a single elaboration process integrated into user applications or a middleware platform for context processing. However, the lack of public datasets considering user context complexity in the mobile environment hinders research progress. We introduce MyDigitalFootprint, a large-scale dataset comprising smartphone sensor data, physical proximity information, and Online Social Networks interactions. This dataset supports multimodal context recognition and social relationship modeling. It spans two months of measurements from 31 volunteer users in their natural environment, allowing for unrestricted behavior. Existing public datasets focus on limited context data for specific applications, while ours offers comprehensive information on the user context in the mobile environment. To demonstrate the dataset's effectiveness, we present three context-aware applications utilizing various machine learning tasks: (i) a social link prediction algorithm based on physical proximity data, (ii) daily-life activity recognition using smartphone-embedded sensors data, and (iii) a pervasive context-aware recommender system. Our dataset, with its heterogeneity of information, serves as a valuable resource to validate new research in mobile and edge computing.
There has been growing interest in using the QUIC transport protocol for the Internet of Things (IoT). In lossy and high latency networks, QUIC outperforms TCP and TLS. Since IoT greatly differs from traditional networks in terms of architecture and resources, IoT specific parameter tuning has proven to be of significance. While RFC 9006 offers a guideline for tuning TCP within IoT, we have not found an equivalent for QUIC. This paper is the first of our knowledge to contribute empirically based insights towards tuning QUIC for IoT. We improved our pure HTTP/3 publish-subscribe architecture and rigorously benchmarked it against an alternative: MQTT-over-QUIC. To investigate the impact of transport-layer parameters, we ran both applications on Raspberry Pi Zero hardware. Eight metrics were collected while emulating different network conditions and message payloads. We enumerate the points we experimentally identified (notably, relating to authentication, MAX\_STREAM messages, and timers) and elaborate on how they can be tuned to improve resource consumption and performance. Our application offered lower latency than MQTT-over-QUIC with slightly higher resource consumption, making it preferable for reliable time-sensitive dissemination of information.
Current perceptual similarity metrics operate at the level of pixels and patches. These metrics compare images in terms of their low-level colors and textures, but fail to capture mid-level similarities and differences in image layout, object pose, and semantic content. In this paper, we develop a perceptual metric that assesses images holistically. Our first step is to collect a new dataset of human similarity judgments over image pairs that are alike in diverse ways. Critical to this dataset is that judgments are nearly automatic and shared by all observers. To achieve this we use recent text-to-image models to create synthetic pairs that are perturbed along various dimensions. We observe that popular perceptual metrics fall short of explaining our new data, and we introduce a new metric, DreamSim, tuned to better align with human perception. We analyze how our metric is affected by different visual attributes, and find that it focuses heavily on foreground objects and semantic content while also being sensitive to color and layout. Notably, despite being trained on synthetic data, our metric generalizes to real images, giving strong results on retrieval and reconstruction tasks. Furthermore, our metric outperforms both prior learned metrics and recent large vision models on these tasks.
Since 2015 video dimensionality has expanded to higher spatial and temporal resolutions and a wider colour gamut. This High Dynamic Range (HDR) content has gained traction in the consumer space as it delivers an enhanced quality of experience. At the same time, the complexity of codecs is growing. This has driven the development of tools for content-adaptive optimisation that achieve optimal rate-distortion performance for HDR video at 4K resolution. While improvements of just a few percentage points in BD-Rate (1-5\%) are significant for the streaming media industry, the impact on subjective quality has been less studied especially for HDR/AV1. In this paper, we conduct a subjective quality assessment (42 subjects) of 4K HDR content with a per-clip optimisation strategy. We correlate these subjective scores with existing popular objective metrics used in standard development and show that some perceptual metrics correlate surprisingly well even though they are not tuned for HDR. We find that the DSQCS protocol is too insensitive to categorically compare the methods but the data allows us to make recommendations about the use of experts vs non-experts in HDR studies, and explain the subjective impact of film grain in HDR content under compression.
Deep learning shows great potential in generation tasks thanks to deep latent representation. Generative models are classes of models that can generate observations randomly with respect to certain implied parameters. Recently, the diffusion Model becomes a raising class of generative models by virtue of its power-generating ability. Nowadays, great achievements have been reached. More applications except for computer vision, speech generation, bioinformatics, and natural language processing are to be explored in this field. However, the diffusion model has its natural drawback of a slow generation process, leading to many enhanced works. This survey makes a summary of the field of the diffusion model. We firstly state the main problem with two landmark works - DDPM and DSM. Then, we present a diverse range of advanced techniques to speed up the diffusion models - training schedule, training-free sampling, mixed-modeling, and score & diffusion unification. Regarding existing models, we also provide a benchmark of FID score, IS, and NLL according to specific NFE. Moreover, applications with diffusion models are introduced including computer vision, sequence modeling, audio, and AI for science. Finally, there is a summarization of this field together with limitations & further directions.
The generalization mystery in deep learning is the following: Why do over-parameterized neural networks trained with gradient descent (GD) generalize well on real datasets even though they are capable of fitting random datasets of comparable size? Furthermore, from among all solutions that fit the training data, how does GD find one that generalizes well (when such a well-generalizing solution exists)? We argue that the answer to both questions lies in the interaction of the gradients of different examples during training. Intuitively, if the per-example gradients are well-aligned, that is, if they are coherent, then one may expect GD to be (algorithmically) stable, and hence generalize well. We formalize this argument with an easy to compute and interpretable metric for coherence, and show that the metric takes on very different values on real and random datasets for several common vision networks. The theory also explains a number of other phenomena in deep learning, such as why some examples are reliably learned earlier than others, why early stopping works, and why it is possible to learn from noisy labels. Moreover, since the theory provides a causal explanation of how GD finds a well-generalizing solution when one exists, it motivates a class of simple modifications to GD that attenuate memorization and improve generalization. Generalization in deep learning is an extremely broad phenomenon, and therefore, it requires an equally general explanation. We conclude with a survey of alternative lines of attack on this problem, and argue that the proposed approach is the most viable one on this basis.
Image segmentation is a key topic in image processing and computer vision with applications such as scene understanding, medical image analysis, robotic perception, video surveillance, augmented reality, and image compression, among many others. Various algorithms for image segmentation have been developed in the literature. Recently, due to the success of deep learning models in a wide range of vision applications, there has been a substantial amount of works aimed at developing image segmentation approaches using deep learning models. In this survey, we provide a comprehensive review of the literature at the time of this writing, covering a broad spectrum of pioneering works for semantic and instance-level segmentation, including fully convolutional pixel-labeling networks, encoder-decoder architectures, multi-scale and pyramid based approaches, recurrent networks, visual attention models, and generative models in adversarial settings. We investigate the similarity, strengths and challenges of these deep learning models, examine the most widely used datasets, report performances, and discuss promising future research directions in this area.
We investigate the problem of automatically determining what type of shoe left an impression found at a crime scene. This recognition problem is made difficult by the variability in types of crime scene evidence (ranging from traces of dust or oil on hard surfaces to impressions made in soil) and the lack of comprehensive databases of shoe outsole tread patterns. We find that mid-level features extracted by pre-trained convolutional neural nets are surprisingly effective descriptors for this specialized domains. However, the choice of similarity measure for matching exemplars to a query image is essential to good performance. For matching multi-channel deep features, we propose the use of multi-channel normalized cross-correlation and analyze its effectiveness. Our proposed metric significantly improves performance in matching crime scene shoeprints to laboratory test impressions. We also show its effectiveness in other cross-domain image retrieval problems: matching facade images to segmentation labels and aerial photos to map images. Finally, we introduce a discriminatively trained variant and fine-tune our system through our proposed metric, obtaining state-of-the-art performance.
While it is nearly effortless for humans to quickly assess the perceptual similarity between two images, the underlying processes are thought to be quite complex. Despite this, the most widely used perceptual metrics today, such as PSNR and SSIM, are simple, shallow functions, and fail to account for many nuances of human perception. Recently, the deep learning community has found that features of the VGG network trained on the ImageNet classification task has been remarkably useful as a training loss for image synthesis. But how perceptual are these so-called "perceptual losses"? What elements are critical for their success? To answer these questions, we introduce a new Full Reference Image Quality Assessment (FR-IQA) dataset of perceptual human judgments, orders of magnitude larger than previous datasets. We systematically evaluate deep features across different architectures and tasks and compare them with classic metrics. We find that deep features outperform all previous metrics by huge margins. More surprisingly, this result is not restricted to ImageNet-trained VGG features, but holds across different deep architectures and levels of supervision (supervised, self-supervised, or even unsupervised). Our results suggest that perceptual similarity is an emergent property shared across deep visual representations.