亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

The transition to a net zero energy system necessitates development in a number of directions including developing advanced electricity trading markets. Due to electricity markets being responsible for a large portion of carbon emissions, improving the electricity markets' method for determining energy transactions could have a significant impact on carbon reductions and thus facilitate this transition. V2X technology can be applied to regulate different energy markets, and thus reduce costs and carbon emissions by using the batteries in electric vehicles to store energy during off-peak hours and export it during peak hours. We develop a novel contract based on the VCG-mechanism, for exporting and importing electricity effectively, and show how this mechanism can raise efficiency, facilitate the development of a sustainable and efficient electricity market, and bring us nearer to our Net Zero Goal.

相關內容

This paper studies delayed stochastic algorithms for weakly convex optimization in a distributed network with workers connected to a master node. Recently, Xu et al. 2022 showed that an inertial stochastic subgradient method converges at a rate of $\mathcal{O}(\tau_{\text{max}}/\sqrt{K})$ which depends on the maximum information delay $\tau_{\text{max}}$. In this work, we show that the delayed stochastic subgradient method ($\texttt{DSGD}$) obtains a tighter convergence rate which depends on the expected delay $\bar{\tau}$. Furthermore, for an important class of composition weakly convex problems, we develop a new delayed stochastic prox-linear ($\texttt{DSPL}$) method in which the delays only affect the high-order term in the complexity rate and hence, are negligible after a certain number of $\texttt{DSPL}$ iterations. In addition, we demonstrate the robustness of our proposed algorithms against arbitrary delays. By incorporating a simple safeguarding step in both methods, we achieve convergence rates that depend solely on the number of workers, eliminating the effect of the delay. Our numerical experiments further confirm the empirical superiority of our proposed methods.

Diffusion models have gained prominence in the image domain for their capabilities in data generation and transformation, achieving state-of-the-art performance in various tasks in both image and audio domains. In the rapidly evolving field of audio-based machine learning, safeguarding model integrity and establishing data copyright are of paramount importance. This paper presents the first watermarking technique applied to audio diffusion models trained on mel-spectrograms. This offers a novel approach to the aforementioned challenges. Our model excels not only in benign audio generation, but also incorporates an invisible watermarking trigger mechanism for model verification. This watermark trigger serves as a protective layer, enabling the identification of model ownership and ensuring its integrity. Through extensive experiments, we demonstrate that invisible watermark triggers can effectively protect against unauthorized modifications while maintaining high utility in benign audio generation tasks.

A thorough regulation of building energy systems translates in relevant energy savings and in a better comfort for the occupants. Algorithms to predict the thermal state of a building on a certain time horizon with a good confidence are essential for the implementation of effective control systems. This work presents a global Transformer architecture for indoor temperature forecasting in multi-room buildings, aiming at optimizing energy consumption and reducing greenhouse gas emissions associated with HVAC systems. Recent advancements in deep learning have enabled the development of more sophisticated forecasting models compared to traditional feedback control systems. The proposed global Transformer architecture can be trained on the entire dataset encompassing all rooms, eliminating the need for multiple room-specific models, significantly improving predictive performance, and simplifying deployment and maintenance. Notably, this study is the first to apply a Transformer architecture for indoor temperature forecasting in multi-room buildings. The proposed approach provides a novel solution to enhance the accuracy and efficiency of temperature forecasting, serving as a valuable tool to optimize energy consumption and decrease greenhouse gas emissions in the building sector.

Survivor bias in observational data leads the optimization of recommender systems towards local optima. Currently most solutions re-mines existing human-system collaboration patterns to maximize longer-term satisfaction by reinforcement learning. However, from the causal perspective, mitigating survivor effects requires answering a counterfactual problem, which is generally unidentifiable and inestimable. In this work, we propose a neural causal model to achieve counterfactual inference. Specifically, we first build a learnable structural causal model based on its available graphical representations which qualitatively characterizes the preference transitions. Mitigation of the survivor bias is achieved though counterfactual consistency. To identify the consistency, we use the Gumbel-max function as structural constrains. To estimate the consistency, we apply reinforcement optimizations, and use Gumbel-Softmax as a trade-off to get a differentiable function. Both theoretical and empirical studies demonstrate the effectiveness of our solution.

Spiking neural networks (SNNs) have ultra-low energy consumption and high biological plausibility due to their binary and bio-driven nature compared with artificial neural networks (ANNs). While previous research has primarily focused on enhancing the performance of SNNs in classification tasks, the generative potential of SNNs remains relatively unexplored. In our paper, we put forward Spiking Denoising Diffusion Probabilistic Models (SDDPM), a new class of SNN-based generative models that achieve high sample quality. To fully exploit the energy efficiency of SNNs, we propose a purely Spiking U-Net architecture, which achieves comparable performance to its ANN counterpart using only 4 time steps, resulting in significantly reduced energy consumption. Extensive experimental results reveal that our approach achieves state-of-the-art on the generative tasks and substantially outperforms other SNN-based generative models, achieving up to 12x and 6x improvement on the CIFAR-10 and the CelebA datasets, respectively. Moreover, we propose a threshold-guided strategy that can further improve the performances by 2.69% in a training-free manner. The SDDPM symbolizes a significant advancement in the field of SNN generation, injecting new perspectives and potential avenues of exploration. Our code is available at //github.com/AndyCao1125/SDDPM.

Many problems can be viewed as forms of geospatial search aided by aerial imagery, with examples ranging from detecting poaching activity to human trafficking. We model this class of problems in a visual active search (VAS) framework, which has three key inputs: (1) an image of the entire search area, which is subdivided into regions, (2) a local search function, which determines whether a previously unseen object class is present in a given region, and (3) a fixed search budget, which limits the number of times the local search function can be evaluated. The goal is to maximize the number of objects found within the search budget. We propose a reinforcement learning approach for VAS that learns a meta-search policy from a collection of fully annotated search tasks. This meta-search policy is then used to dynamically search for a novel target-object class, leveraging the outcome of any previous queries to determine where to query next. Through extensive experiments on several large-scale satellite imagery datasets, we show that the proposed approach significantly outperforms several strong baselines. We also propose novel domain adaptation techniques that improve the policy at decision time when there is a significant domain gap with the training data. Code is publicly available.

Functional magnetic resonance imaging or functional MRI (fMRI) is a very popular tool used for differing brain regions by measuring brain activity. It is affected by physiological noise, such as head and brain movement in the scanner from breathing, heart beats, or the subject fidgeting. The purpose of this paper is to propose a novel approach to handling fMRI data for infants with high volatility caused by sudden head movements. Another purpose is to evaluate the volatility modelling performance of multiple dependent fMRI time series data. The models examined in this paper are AR and GARCH and the modelling performance is evaluated by several statistical performance measures. The conclusions of this paper are that multiple dependent fMRI series data can be fitted with AR + GARCH model if the multiple fMRI data have many sudden head movements. The GARCH model can capture the shared volatility clustering caused by head movements across brain regions. However, the multiple fMRI data without many head movements have fitted AR + GARCH model with different performance. The conclusions are supported by statistical tests and measures. This paper highlights the difference between the proposed approach from traditional approaches when estimating model parameters and modelling conditional variances on multiple dependent time series. In the future, the proposed approach can be applied to other research fields, such as financial economics, and signal processing. Code is available at \url{//github.com/13204942/STAT40710}.

Humans perceive the world by concurrently processing and fusing high-dimensional inputs from multiple modalities such as vision and audio. Machine perception models, in stark contrast, are typically modality-specific and optimised for unimodal benchmarks, and hence late-stage fusion of final representations or predictions from each modality (`late-fusion') is still a dominant paradigm for multimodal video classification. Instead, we introduce a novel transformer based architecture that uses `fusion bottlenecks' for modality fusion at multiple layers. Compared to traditional pairwise self-attention, our model forces information between different modalities to pass through a small number of bottleneck latents, requiring the model to collate and condense the most relevant information in each modality and only share what is necessary. We find that such a strategy improves fusion performance, at the same time reducing computational cost. We conduct thorough ablation studies, and achieve state-of-the-art results on multiple audio-visual classification benchmarks including Audioset, Epic-Kitchens and VGGSound. All code and models will be released.

Embedding entities and relations into a continuous multi-dimensional vector space have become the dominant method for knowledge graph embedding in representation learning. However, most existing models ignore to represent hierarchical knowledge, such as the similarities and dissimilarities of entities in one domain. We proposed to learn a Domain Representations over existing knowledge graph embedding models, such that entities that have similar attributes are organized into the same domain. Such hierarchical knowledge of domains can give further evidence in link prediction. Experimental results show that domain embeddings give a significant improvement over the most recent state-of-art baseline knowledge graph embedding models.

Deep neural networks (DNNs) have been found to be vulnerable to adversarial examples resulting from adding small-magnitude perturbations to inputs. Such adversarial examples can mislead DNNs to produce adversary-selected results. Different attack strategies have been proposed to generate adversarial examples, but how to produce them with high perceptual quality and more efficiently requires more research efforts. In this paper, we propose AdvGAN to generate adversarial examples with generative adversarial networks (GANs), which can learn and approximate the distribution of original instances. For AdvGAN, once the generator is trained, it can generate adversarial perturbations efficiently for any instance, so as to potentially accelerate adversarial training as defenses. We apply AdvGAN in both semi-whitebox and black-box attack settings. In semi-whitebox attacks, there is no need to access the original target model after the generator is trained, in contrast to traditional white-box attacks. In black-box attacks, we dynamically train a distilled model for the black-box model and optimize the generator accordingly. Adversarial examples generated by AdvGAN on different target models have high attack success rate under state-of-the-art defenses compared to other attacks. Our attack has placed the first with 92.76% accuracy on a public MNIST black-box attack challenge.

北京阿比特科技有限公司