Partially Observable Markov Decision Processes (POMDPs) are powerful models for sequential decision making under transition and observation uncertainties. This paper studies the challenging yet important problem in POMDPs known as the (indefinite-horizon) Maximal Reachability Probability Problem (MRPP), where the goal is to maximize the probability of reaching some target states. This is also a core problem in model checking with logical specifications and is naturally undiscounted (discount factor is one). Inspired by the success of point-based methods developed for discounted problems, we study their extensions to MRPP. Specifically, we focus on trial-based heuristic search value iteration techniques and present a novel algorithm that leverages the strengths of these techniques for efficient exploration of the belief space (informed search via value bounds) while addressing their drawbacks in handling loops for indefinite-horizon problems. The algorithm produces policies with two-sided bounds on optimal reachability probabilities. We prove convergence to an optimal policy from below under certain conditions. Experimental evaluations on a suite of benchmarks show that our algorithm outperforms existing methods in almost all cases in both probability guarantees and computation time.
Few-Shot Class-Incremental Learning (FSCIL) models aim to incrementally learn new classes with scarce samples while preserving knowledge of old ones. Existing FSCIL methods usually fine-tune the entire backbone, leading to overfitting and hindering the potential to learn new classes. On the other hand, recent prompt-based CIL approaches alleviate forgetting by training prompts with sufficient data in each task. In this work, we propose a novel framework named Attention-aware Self-adaptive Prompt (ASP). ASP encourages task-invariant prompts to capture shared knowledge by reducing specific information from the attention aspect. Additionally, self-adaptive task-specific prompts in ASP provide specific information and transfer knowledge from old classes to new classes with an Information Bottleneck learning objective. In summary, ASP prevents overfitting on base task and does not require enormous data in few-shot incremental tasks. Extensive experiments on three benchmark datasets validate that ASP consistently outperforms state-of-the-art FSCIL and prompt-based CIL methods in terms of both learning new classes and mitigating forgetting.
Visual SLAM is a key technology for many autonomous systems. However, tracking loss can lead to the creation of disjoint submaps in multimap SLAM systems like ORB-SLAM3. Because of that, these systems employ submap merging strategies. As we show, these strategies are not always successful. In this paper, we investigate the impact of using modern VPR approaches for submap merging in visual SLAM. We argue that classical evaluation metrics are not sufficient to estimate the impact of a modern VPR component on the overall system. We show that naively replacing the VPR component does not leverage its full potential without requiring substantial interference in the original system. Because of that, we present a post-processing pipeline along with a set of metrics that allow us to estimate the impact of modern VPR components. We evaluate our approach on the NCLT and Newer College datasets using ORB-SLAM3 with NetVLAD and HDC-DELF as VPR components. Additionally, we present a simple approach for combining VPR with temporal consistency for map merging. We show that the map merging performance of ORB-SLAM3 can be improved. Building on these results, researchers in VPR can assess the potential of their approaches for SLAM systems.
Knowledge distillation (KD) is a promising technique for model compression in neural machine translation. However, where the knowledge hides in KD is still not clear, which may hinder the development of KD. In this work, we first unravel this mystery from an empirical perspective and show that the knowledge comes from the top-1 predictions of teachers, which also helps us build a potential connection between word- and sequence-level KD. Further, we point out two inherent issues in vanilla word-level KD based on this finding. Firstly, the current objective of KD spreads its focus to whole distributions to learn the knowledge, yet lacks special treatment on the most crucial top-1 information. Secondly, the knowledge is largely covered by the golden information due to the fact that most top-1 predictions of teachers overlap with ground-truth tokens, which further restricts the potential of KD. To address these issues, we propose a novel method named \textbf{T}op-1 \textbf{I}nformation \textbf{E}nhanced \textbf{K}nowledge \textbf{D}istillation (TIE-KD). Specifically, we design a hierarchical ranking loss to enforce the learning of the top-1 information from the teacher. Additionally, we develop an iterative KD procedure to infuse more additional knowledge by distilling on the data without ground-truth targets. Experiments on WMT'14 English-German, WMT'14 English-French and WMT'16 English-Romanian demonstrate that our method can respectively boost Transformer$_{base}$ students by +1.04, +0.60 and +1.11 BLEU scores and significantly outperform the vanilla word-level KD baseline. Besides, our method shows higher generalizability on different teacher-student capacity gaps than existing KD techniques.
Large Language Models (LLMs) are increasingly used for boosting organizational efficiency and automating tasks. While not originally designed for complex cognitive processes, recent efforts have further extended to employ LLMs in activities such as reasoning, planning, and decision-making. In business processes, such abilities could be invaluable for leveraging on the massive corpora LLMs have been trained on for gaining deep understanding of such processes. In this work, we plant the seeds for the development of a benchmark to assess the ability of LLMs to reason about causal and process perspectives of business operations. We refer to this view as Causally-augmented Business Processes (BP^C). The core of the benchmark comprises a set of BP^C related situations, a set of questions about these situations, and a set of deductive rules employed to systematically resolve the ground truth answers to these questions. Also with the power of LLMs, the seed is then instantiated into a larger-scale set of domain-specific situations and questions. Reasoning on BP^C is of crucial importance for process interventions and process improvement. Our benchmark, accessible at //huggingface.co/datasets/ibm/BPC, can be used in one of two possible modalities: testing the performance of any target LLM and training an LLM to advance its capability to reason about BP^C.
This paper presents a unified differentiable boolean operator for implicit solid shape modeling using Constructive Solid Geometry (CSG). Traditional CSG relies on min, max operators to perform boolean operations on implicit shapes. But because these boolean operators are discontinuous and discrete in the choice of operations, this makes optimization over the CSG representation challenging. Drawing inspiration from fuzzy logic, we present a unified boolean operator that outputs a continuous function and is differentiable with respect to operator types. This enables optimization of both the primitives and the boolean operations employed in CSG with continuous optimization techniques, such as gradient descent. We further demonstrate that such a continuous boolean operator allows modeling of both sharp mechanical objects and smooth organic shapes with the same framework. Our proposed boolean operator opens up new possibilities for future research toward fully continuous CSG optimization.
Large Language Models (LLMs) frequently hallucinate, impeding their reliability in mission-critical situations. One approach to address this issue is to provide citations to relevant sources alongside generated content, enhancing the verifiability of generations. However, citing passages accurately in answers remains a substantial challenge. This paper proposes a weakly-supervised fine-tuning method leveraging factual consistency models (FCMs). Our approach alternates between generating texts with citations and supervised fine-tuning with FCM-filtered citation data. Focused learning is integrated into the objective, directing the fine-tuning process to emphasise the factual unit tokens, as measured by an FCM. Results on the ALCE few-shot citation benchmark with various instruction-tuned LLMs demonstrate superior performance compared to in-context learning, vanilla supervised fine-tuning, and state-of-the-art methods, with an average improvement of $34.1$, $15.5$, and $10.5$ citation F$_1$ points, respectively. Moreover, in a domain transfer setting we show that the obtained citation generation ability robustly transfers to unseen datasets. Notably, our citation improvements contribute to the lowest factual error rate across baselines.
Explainable Artificial Intelligence (XAI) aims to improve the transparency of autonomous decision-making through explanations. Recent literature has emphasised users' need for holistic "multi-shot" explanations and the ability to personalise their engagement with XAI systems. We refer to this user-centred interaction as an XAI Experience. Despite advances in creating XAI experiences, evaluating them in a user-centred manner has remained challenging. To address this, we introduce the XAI Experience Quality (XEQ) Scale (pronounced "Seek" Scale), for evaluating the user-centred quality of XAI experiences. Furthermore, XEQ quantifies the quality of experiences across four evaluation dimensions: learning, utility, fulfilment and engagement. These contributions extend the state-of-the-art of XAI evaluation, moving beyond the one-dimensional metrics frequently developed to assess single-shot explanations. In this paper, we present the XEQ scale development and validation process, including content validation with XAI experts as well as discriminant and construct validation through a large-scale pilot study. Out pilot study results offer strong evidence that establishes the XEQ Scale as a comprehensive framework for evaluating user-centred XAI experiences.
We revisit the sample average approximation (SAA) approach for non-convex stochastic programming. We show that applying the SAA approach to problems with expected value equality constraints does not necessarily result in asymptotic optimality guarantees as the sample size increases. To address this issue, we relax the equality constraints. Then, we prove the asymptotic optimality of the modified SAA approach under mild smoothness and boundedness conditions on the equality constraint functions. Our analysis uses random set theory and concentration inequalities to characterize the approximation error from the sampling procedure. We apply our approach and analysis to the problem of stochastic optimal control for nonlinear dynamical systems under external disturbances modeled by a Wiener process. Numerical results on relevant stochastic programs show the reliability of the proposed approach. Results on a rocket-powered descent problem show that our computed solutions allow for significant uncertainty reduction compared to a deterministic baseline.
Recommendation systems capable of providing diverse sets of results are a focus of increasing importance, with motivations ranging from fairness to novelty and other aspects of optimizing user experience. One form of diversity of recent interest is calibration, the notion that personalized recommendations should reflect the full distribution of a user's interests, rather than a single predominant category -- for instance, a user who mainly reads entertainment news but also wants to keep up with news on the environment and the economy would prefer to see a mixture of these genres, not solely entertainment news. Existing work has formulated calibration as a subset selection problem; this line of work observes that the formulation requires the unrealistic assumption that all recommended items receive equal consideration from the user, but leaves as an open question the more realistic setting in which user attention decays as they move down the list of results. In this paper, we consider calibration with decaying user attention under two different models. In both models, there is a set of underlying genres that items can belong to. In the first setting, where items are represented by fine-grained mixtures of genre percentages, we provide a $(1-1/e)$-approximation algorithm by extending techniques for constrained submodular optimization. In the second setting, where items are coarsely binned into a single genre each, we surpass the $(1-1/e)$ barrier imposed by submodular maximization and give a $2/3$-approximate greedy algorithm. Our work thus addresses the problem of capturing ordering effects due to decaying attention, allowing for the extension of near-optimal calibration from recommendation sets to recommendation lists.
The success of AI models relies on the availability of large, diverse, and high-quality datasets, which can be challenging to obtain due to data scarcity, privacy concerns, and high costs. Synthetic data has emerged as a promising solution by generating artificial data that mimics real-world patterns. This paper provides an overview of synthetic data research, discussing its applications, challenges, and future directions. We present empirical evidence from prior art to demonstrate its effectiveness and highlight the importance of ensuring its factuality, fidelity, and unbiasedness. We emphasize the need for responsible use of synthetic data to build more powerful, inclusive, and trustworthy language models.