We study the problem of the embedding degree of an abelian variety over a finite field which is vital in pairing-based cryptography. In particular, we show that for a prescribed CM field $L$ of degree $\geq 4$, prescribed integers $m$, $n$ and any prime $\ell\equiv 1 \mod{mn}$ that splits completely in $L$, there exists an ordinary abelian variety over a prime finite field with endomorphism algebra $L$, embedding degree $n$ with respect to $\ell$ and the field extension generated by the $\ell$-torsion points of degree $mn$ over the field of definition. We also study a class of absolutely simple higher dimensional abelian varieties whose endomorphism algebras are central over imaginary quadratic fields.
A graph $G$ is called self-ordered (a.k.a asymmetric) if the identity permutation is its only automorphism. Equivalently, there is a unique isomorphism from $G$ to any graph that is isomorphic to $G$. We say that $G=(V,E)$ is robustly self-ordered if the size of the symmetric difference between $E$ and the edge-set of the graph obtained by permuting $V$ using any permutation $\pi:V\to V$ is proportional to the number of non-fixed-points of $\pi$. In this work, we initiate the study of the structure, construction and utility of robustly self-ordered graphs. We show that robustly self-ordered bounded-degree graphs exist (in abundance), and that they can be constructed efficiently, in a strong sense. Specifically, given the index of a vertex in such a graph, it is possible to find all its neighbors in polynomial-time (i.e., in time that is poly-logarithmic in the size of the graph). We also consider graphs of unbounded degree, seeking correspondingly unbounded robustness parameters. We again demonstrate that such graphs (of linear degree) exist (in abundance), and that they can be constructed efficiently, in a strong sense. This turns out to require very different tools. Specifically, we show that the construction of such graphs reduces to the construction of non-malleable two-source extractors (with very weak parameters but with some additional natural features). We demonstrate that robustly self-ordered bounded-degree graphs are useful towards obtaining lower bounds on the query complexity of testing graph properties both in the bounded-degree and the dense graph models. One of the results that we obtain, via such a reduction, is a subexponential separation between the query complexities of testing and tolerant testing of graph properties in the bounded-degree graph model.
Let $\{G_i :i\in\N\}$ be a family of finite Abelian groups. We say that a subgroup $G\leq \prod\limits_{i\in \N}G_i$ is \emph{order controllable} if for every $i\in \mathbb{N}$ there is $n_i\in \mathbb{N}$ such that for each $c\in G$, there exists $c_1\in G$ satisfying that $c_{1|[1,i]}=c_{|[1,i]}$, $supp (c_1)\subseteq [1,n_i]$, and order$(c_1)$ divides order$(c_{|[1,n_i]})$. In this paper we investigate the structure of order controllable group codes. It is proved that if $G$ is an order controllable, shift invariant, group code over a finite abelian group $H$, then $G$ possesses a finite canonical generating set. Furthermore, our construction also yields that $G$ is algebraically conjugate to a full group shift.
Let $\{G_i :i\in\N\}$ be a family of finite Abelian groups. We say that a subgroup $G\leq \prod\limits_{i\in \N}G_i$ is \emph{order controllable} if for every $i\in \mathbb{N}$ there is $n_i\in \mathbb{N}$ such that for each $c\in G$, there exists $c_1\in G$ satisfying that $c_{1|[1,i]}=c_{|[1,i]}$, $supp (c_1)\subseteq [1,n_i]$, and order$(c_1)$ divides order$(c_{|[1,n_i]})$. In this paper we investigate the structure of order controllable subgroups. It is proved that every order controllable, profinite, abelian group contains a subset $\{g_n : n\in\N\}$ that topologically generates the group and whose elements $g_n$ all have finite support. As a consequence, sufficient conditions are obtained that allow us to encode, by means of a topological group isomorphism, order controllable profinite abelian groups. Some applications of these results to group codes will appear subsequently \cite{FH:2021}.
In this manuscript we present a detailed proof for undecidability of the equivalence of finite substitutions on regular language $b\{0,1\}^*c$. The proof is based on the works of Leonid P. Lisovik.
We propose a new representation of $k$-partite, $k$-uniform hypergraphs (i.e. a hypergraph with a partition of vertices into $k$ parts such that each hyperedge contains exactly one vertex of each type; we call them $k$-hypergraphs for short) by a finite set $P$ of points in $\mathbb{R}^d$ and a parameter $\ell\leq d-1$. Each point in $P$ is covered by $k={d\choose\ell}$ many axis-aligned affine $\ell$-dimensional subspaces of $\mathbb{R}^d$, which we call $\ell$-subspaces for brevity. We interpret each point in $P$ as a hyperedge that contains each of the covering $\ell$-subspaces as a vertex. The class of $(d,\ell)$-hypergraphs is the class of $k$-hypergraphs that can be represented in this way, where $k={d\choose\ell}$. The resulting classes of hypergraphs are fairly rich: Every $k$-hypergraph is a $(k,k-1)$-hypergraph. On the other hand, $(d,\ell)$-hypergraphs form a proper subclass of the class of all $d\choose\ell$-hypergraphs for $\ell<d-1$. In this paper we give a natural structural characterization of $(d,\ell)$-hypergraphs based on vertex cuts. This characterization leads to a polynomial-time recognition algorithm that decides for a given $d\choose\ell$-hypergraph whether or not it is a $(d,\ell)$-hypergraph and that computes a representation if existing. We assume that the dimension $d$ is constant and that the partitioning of the vertex set is prescribed.
Object-oriented programming (OOP) is one of the most popular paradigms used for building software systems. However, despite its industrial and academic popularity, OOP is still missing a formal apparatus similar to lambda-calculus, which functional programming is based on. There were a number of attempts to formalize OOP, but none of them managed to cover all the features available in modern OO programming languages, such as C++ or Java. We have made yet another attempt and created phi-calculus. We also created EOLANG (also called EO), an experimental programming language based on phi-calculus.
Sphere recognition is known to be undecidable in dimensions five and beyond, and no polynomial time method is known in dimensions three and four. Here we report on positive and negative computational results with the goal to explore the limits of sphere recognition from a practical point of view. An important ingredient are randomly constructed discrete Morse functions.
Network embedding aims to learn a latent, low-dimensional vector representations of network nodes, effective in supporting various network analytic tasks. While prior arts on network embedding focus primarily on preserving network topology structure to learn node representations, recently proposed attributed network embedding algorithms attempt to integrate rich node content information with network topological structure for enhancing the quality of network embedding. In reality, networks often have sparse content, incomplete node attributes, as well as the discrepancy between node attribute feature space and network structure space, which severely deteriorates the performance of existing methods. In this paper, we propose a unified framework for attributed network embedding-attri2vec-that learns node embeddings by discovering a latent node attribute subspace via a network structure guided transformation performed on the original attribute space. The resultant latent subspace can respect network structure in a more consistent way towards learning high-quality node representations. We formulate an optimization problem which is solved by an efficient stochastic gradient descent algorithm, with linear time complexity to the number of nodes. We investigate a series of linear and non-linear transformations performed on node attributes and empirically validate their effectiveness on various types of networks. Another advantage of attri2vec is its ability to solve out-of-sample problems, where embeddings of new coming nodes can be inferred from their node attributes through the learned mapping function. Experiments on various types of networks confirm that attri2vec is superior to state-of-the-art baselines for node classification, node clustering, as well as out-of-sample link prediction tasks. The source code of this paper is available at //github.com/daokunzhang/attri2vec.
Network embedding has attracted considerable research attention recently. However, the existing methods are incapable of handling billion-scale networks, because they are computationally expensive and, at the same time, difficult to be accelerated by distributed computing schemes. To address these problems, we propose RandNE, a novel and simple billion-scale network embedding method. Specifically, we propose a Gaussian random projection approach to map the network into a low-dimensional embedding space while preserving the high-order proximities between nodes. To reduce the time complexity, we design an iterative projection procedure to avoid the explicit calculation of the high-order proximities. Theoretical analysis shows that our method is extremely efficient, and friendly to distributed computing schemes without any communication cost in the calculation. We demonstrate the efficacy of RandNE over state-of-the-art methods in network reconstruction and link prediction tasks on multiple datasets with different scales, ranging from thousands to billions of nodes and edges.
Many resource allocation problems in the cloud can be described as a basic Virtual Network Embedding Problem (VNEP): finding mappings of request graphs (describing the workloads) onto a substrate graph (describing the physical infrastructure). In the offline setting, the two natural objectives are profit maximization, i.e., embedding a maximal number of request graphs subject to the resource constraints, and cost minimization, i.e., embedding all requests at minimal overall cost. The VNEP can be seen as a generalization of classic routing and call admission problems, in which requests are arbitrary graphs whose communication endpoints are not fixed. Due to its applications, the problem has been studied intensively in the networking community. However, the underlying algorithmic problem is hardly understood. This paper presents the first fixed-parameter tractable approximation algorithms for the VNEP. Our algorithms are based on randomized rounding. Due to the flexible mapping options and the arbitrary request graph topologies, we show that a novel linear program formulation is required. Only using this novel formulation the computation of convex combinations of valid mappings is enabled, as the formulation needs to account for the structure of the request graphs. Accordingly, to capture the structure of request graphs, we introduce the graph-theoretic notion of extraction orders and extraction width and show that our algorithms have exponential runtime in the request graphs' maximal width. Hence, for request graphs of fixed extraction width, we obtain the first polynomial-time approximations. Studying the new notion of extraction orders we show that (i) computing extraction orders of minimal width is NP-hard and (ii) that computing decomposable LP solutions is in general NP-hard, even when restricting request graphs to planar ones.