To facilitate an effective, efficient, transparent, and timely decision-making process as well as to provide guidelines for industry planning and public policy development, a conceptual framework of digital twins (DTs) for logistics and supply chain systems (LSCS) is needed. This paper first introduces the background of the logistics and supply chain industry, the DT and its potential benefits, and the motivations and scope of this research. The literature review indicates research and practice gaps and needs that motivate proposing a new conceptual DT framework for LSCS. As each element of the new framework has different requirements and goals, it initiates new research opportunities and creates practical implementation challenges. As such, the future of DT computation involves advanced analytics and modeling techniques to address the new agenda's requirements. Finally, ideas on the next steps to deploy a transparent, trustworthy, and resilient DT for LSCS are presented.
Medical imaging analysis has witnessed remarkable advancements even surpassing human-level performance in recent years, driven by the rapid development of advanced deep-learning algorithms. However, when the inference dataset slightly differs from what the model has seen during one-time training, the model performance is greatly compromised. The situation requires restarting the training process using both the old and the new data which is computationally costly, does not align with the human learning process, and imposes storage constraints and privacy concerns. Alternatively, continual learning has emerged as a crucial approach for developing unified and sustainable deep models to deal with new classes, tasks, and the drifting nature of data in non-stationary environments for various application areas. Continual learning techniques enable models to adapt and accumulate knowledge over time, which is essential for maintaining performance on evolving datasets and novel tasks. This systematic review paper provides a comprehensive overview of the state-of-the-art in continual learning techniques applied to medical imaging analysis. We present an extensive survey of existing research, covering topics including catastrophic forgetting, data drifts, stability, and plasticity requirements. Further, an in-depth discussion of key components of a continual learning framework such as continual learning scenarios, techniques, evaluation schemes, and metrics is provided. Continual learning techniques encompass various categories, including rehearsal, regularization, architectural, and hybrid strategies. We assess the popularity and applicability of continual learning categories in various medical sub-fields like radiology and histopathology...
Image registration has traditionally been done using two distinct approaches: learning based methods, relying on robust deep neural networks, and optimization-based methods, applying complex mathematical transformations to warp images accordingly. Of course, both paradigms offer advantages and disadvantages, and, in this work, we seek to combine their respective strengths into a single streamlined framework, using the outputs of the learning based method as initial parameters for optimization while prioritizing computational power for the image pairs that offer the greatest loss. Our investigations showed improvements of up to 1.6% in test data, while maintaining the same inference time, and a substantial 1.0% points performance gain in deformation field smoothness.
The growing emphasis on studying equity, diversity, and inclusion within software engineering has amplified the need to explore hidden populations within this field. Exploring hidden populations becomes important to obtain invaluable insights into the experiences, challenges, and perspectives of underrepresented groups in software engineering and, therefore, devise strategies to make the software industry more diverse. However, studying these hidden populations presents multifaceted challenges, including the complexities associated with identifying and engaging participants due to their marginalized status. In this paper, we discuss our experiences and lessons learned while conducting multiple studies involving hidden populations in software engineering. We emphasize the importance of recognizing and addressing these challenges within the software engineering research community to foster a more inclusive and comprehensive understanding of diverse populations of software professionals.
Recommendation systems have become popular and effective tools to help users discover their interesting items by modeling the user preference and item property based on implicit interactions (e.g., purchasing and clicking). Humans perceive the world by processing the modality signals (e.g., audio, text and image), which inspired researchers to build a recommender system that can understand and interpret data from different modalities. Those models could capture the hidden relations between different modalities and possibly recover the complementary information which can not be captured by a uni-modal approach and implicit interactions. The goal of this survey is to provide a comprehensive review of the recent research efforts on the multimodal recommendation. Specifically, it shows a clear pipeline with commonly used techniques in each step and classifies the models by the methods used. Additionally, a code framework has been designed that helps researchers new in this area to understand the principles and techniques, and easily runs the SOTA models. Our framework is located at: //github.com/enoche/MMRec
Face recognition technology has advanced significantly in recent years due largely to the availability of large and increasingly complex training datasets for use in deep learning models. These datasets, however, typically comprise images scraped from news sites or social media platforms and, therefore, have limited utility in more advanced security, forensics, and military applications. These applications require lower resolution, longer ranges, and elevated viewpoints. To meet these critical needs, we collected and curated the first and second subsets of a large multi-modal biometric dataset designed for use in the research and development (R&D) of biometric recognition technologies under extremely challenging conditions. Thus far, the dataset includes more than 350,000 still images and over 1,300 hours of video footage of approximately 1,000 subjects. To collect this data, we used Nikon DSLR cameras, a variety of commercial surveillance cameras, specialized long-rage R&D cameras, and Group 1 and Group 2 UAV platforms. The goal is to support the development of algorithms capable of accurately recognizing people at ranges up to 1,000 m and from high angles of elevation. These advances will include improvements to the state of the art in face recognition and will support new research in the area of whole-body recognition using methods based on gait and anthropometry. This paper describes methods used to collect and curate the dataset, and the dataset's characteristics at the current stage.
In pace with developments in the research field of artificial intelligence, knowledge graphs (KGs) have attracted a surge of interest from both academia and industry. As a representation of semantic relations between entities, KGs have proven to be particularly relevant for natural language processing (NLP), experiencing a rapid spread and wide adoption within recent years. Given the increasing amount of research work in this area, several KG-related approaches have been surveyed in the NLP research community. However, a comprehensive study that categorizes established topics and reviews the maturity of individual research streams remains absent to this day. Contributing to closing this gap, we systematically analyzed 507 papers from the literature on KGs in NLP. Our survey encompasses a multifaceted review of tasks, research types, and contributions. As a result, we present a structured overview of the research landscape, provide a taxonomy of tasks, summarize our findings, and highlight directions for future work.
With the advent of 5G commercialization, the need for more reliable, faster, and intelligent telecommunication systems are envisaged for the next generation beyond 5G (B5G) radio access technologies. Artificial Intelligence (AI) and Machine Learning (ML) are not just immensely popular in the service layer applications but also have been proposed as essential enablers in many aspects of B5G networks, from IoT devices and edge computing to cloud-based infrastructures. However, most of the existing surveys in B5G security focus on the performance of AI/ML models and their accuracy, but they often overlook the accountability and trustworthiness of the models' decisions. Explainable AI (XAI) methods are promising techniques that would allow system developers to identify the internal workings of AI/ML black-box models. The goal of using XAI in the security domain of B5G is to allow the decision-making processes of the security of systems to be transparent and comprehensible to stakeholders making the systems accountable for automated actions. In every facet of the forthcoming B5G era, including B5G technologies such as RAN, zero-touch network management, E2E slicing, this survey emphasizes the role of XAI in them and the use cases that the general users would ultimately enjoy. Furthermore, we presented the lessons learned from recent efforts and future research directions on top of the currently conducted projects involving XAI.
A fundamental goal of scientific research is to learn about causal relationships. However, despite its critical role in the life and social sciences, causality has not had the same importance in Natural Language Processing (NLP), which has traditionally placed more emphasis on predictive tasks. This distinction is beginning to fade, with an emerging area of interdisciplinary research at the convergence of causal inference and language processing. Still, research on causality in NLP remains scattered across domains without unified definitions, benchmark datasets and clear articulations of the remaining challenges. In this survey, we consolidate research across academic areas and situate it in the broader NLP landscape. We introduce the statistical challenge of estimating causal effects, encompassing settings where text is used as an outcome, treatment, or as a means to address confounding. In addition, we explore potential uses of causal inference to improve the performance, robustness, fairness, and interpretability of NLP models. We thus provide a unified overview of causal inference for the computational linguistics community.
With the advances of data-driven machine learning research, a wide variety of prediction problems have been tackled. It has become critical to explore how machine learning and specifically deep learning methods can be exploited to analyse healthcare data. A major limitation of existing methods has been the focus on grid-like data; however, the structure of physiological recordings are often irregular and unordered which makes it difficult to conceptualise them as a matrix. As such, graph neural networks have attracted significant attention by exploiting implicit information that resides in a biological system, with interactive nodes connected by edges whose weights can be either temporal associations or anatomical junctions. In this survey, we thoroughly review the different types of graph architectures and their applications in healthcare. We provide an overview of these methods in a systematic manner, organized by their domain of application including functional connectivity, anatomical structure and electrical-based analysis. We also outline the limitations of existing techniques and discuss potential directions for future research.
Many tasks in natural language processing can be viewed as multi-label classification problems. However, most of the existing models are trained with the standard cross-entropy loss function and use a fixed prediction policy (e.g., a threshold of 0.5) for all the labels, which completely ignores the complexity and dependencies among different labels. In this paper, we propose a meta-learning method to capture these complex label dependencies. More specifically, our method utilizes a meta-learner to jointly learn the training policies and prediction policies for different labels. The training policies are then used to train the classifier with the cross-entropy loss function, and the prediction policies are further implemented for prediction. Experimental results on fine-grained entity typing and text classification demonstrate that our proposed method can obtain more accurate multi-label classification results.