亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

The recent advance of neural fields, such as neural radiance fields, has significantly pushed the boundary of scene representation learning. Aiming to boost the computation efficiency and rendering quality of 3D scenes, a popular line of research maps the 3D coordinate system to another measuring system, e.g., 2D manifolds and hash tables, for modeling neural fields. The conversion of coordinate systems can be typically dubbed as \emph{gauge transformation}, which is usually a pre-defined mapping function, e.g., orthogonal projection or spatial hash function. This begs a question: can we directly learn a desired gauge transformation along with the neural field in an end-to-end manner? In this work, we extend this problem to a general paradigm with a taxonomy of discrete \& continuous cases, and develop a learning framework to jointly optimize gauge transformations and neural fields. To counter the problem that the learning of gauge transformations can collapse easily, we derive a general regularization mechanism from the principle of information conservation during the gauge transformation. To circumvent the high computation cost in gauge learning with regularization, we directly derive an information-invariant gauge transformation which allows to preserve scene information inherently and yield superior performance. Project: //fnzhan.com/Neural-Gauge-Fields

相關內容

The inadequate mixing of conventional Markov Chain Monte Carlo (MCMC) methods for multi-modal distributions presents a significant challenge in practical applications such as Bayesian inference and molecular dynamics. Addressing this, we propose Diffusive Gibbs Sampling (DiGS), an innovative family of sampling methods designed for effective sampling from distributions characterized by distant and disconnected modes. DiGS integrates recent developments in diffusion models, leveraging Gaussian convolution to create an auxiliary noisy distribution that bridges isolated modes in the original space and applying Gibbs sampling to alternately draw samples from both spaces. Our approach exhibits a better mixing property for sampling multi-modal distributions than state-of-the-art methods such as parallel tempering. We demonstrate that our sampler attains substantially improved results across various tasks, including mixtures of Gaussians, Bayesian neural networks and molecular dynamics.

Most work on the formal verification of neural networks has focused on bounding the set of outputs that correspond to a given set of inputs (for example, bounded perturbations of a nominal input). However, many use cases of neural network verification require solving the inverse problem, or over-approximating the set of inputs that lead to certain outputs. We present the INVPROP algorithm for verifying properties over the preimage of a linearly constrained output set, which can be combined with branch-and-bound to increase precision. Contrary to other approaches, our efficient algorithm is GPU-accelerated and does not require a linear programming solver. We demonstrate our algorithm for identifying safe control regions for a dynamical system via backward reachability analysis, verifying adversarial robustness, and detecting out-of-distribution inputs to a neural network. Our results show that in certain settings, we find over-approximations over 2500x tighter than prior work while being 2.5x faster. By strengthening robustness verification with output constraints, we consistently verify more properties than the previous state-of-the-art on multiple benchmarks, including a large model with 167k neurons in VNN-COMP 2023. Our algorithm has been incorporated into the $\alpha,\!\beta$-CROWN verifier, available at //abcrown.org.

Spiking neural networks (SNNs) offer an energy-efficient alternative to conventional deep learning by mimicking the event-driven processing of the brain. Incorporating the Transformers with SNNs has shown promise for accuracy, yet it is incompetent to capture high-frequency patterns like moving edge and pixel-level brightness changes due to their reliance on global self-attention operations. Porting frequency representations in SNN is challenging yet crucial for event-driven vision. To address this issue, we propose the Spiking Wavelet Transformer (SWformer), an attention-free architecture that effectively learns comprehensive spatial-frequency features in a spike-driven manner by leveraging the sparse wavelet transform. The critical component is a Frequency-Aware Token Mixer (FATM) with three branches: 1) spiking wavelet learner for spatial-frequency domain learning, 2) convolution-based learner for spatial feature extraction, and 3) spiking pointwise convolution for cross-channel information aggregation. We also adopt negative spike dynamics to strengthen the frequency representation further. This enables the SWformer to outperform vanilla Spiking Transformers in capturing high-frequency visual components, as evidenced by our empirical results. Experiments on both static and neuromorphic datasets demonstrate SWformer's effectiveness in capturing spatial-frequency patterns in a multiplication-free, event-driven fashion, outperforming state-of-the-art SNNs. SWformer achieves an over 50% reduction in energy consumption, a 21.1% reduction in parameter count, and a 2.40% performance improvement on the ImageNet dataset compared to vanilla Spiking Transformers.

Probabilistic model checking can provide formal guarantees on the behavior of stochastic models relating to a wide range of quantitative properties, such as runtime, energy consumption or cost. But decision making is typically with respect to the expected value of these quantities, which can mask important aspects of the full probability distribution such as the possibility of high-risk, low-probability events or multimodalities. We propose a distributional extension of probabilistic model checking, applicable to discrete-time Markov chains (DTMCs) and Markov decision processes (MDPs). We formulate distributional queries, which can reason about a variety of distributional measures, such as variance, value-at-risk or conditional value-at-risk, for the accumulation of reward until a co-safe linear temporal logic formula is satisfied. For DTMCs, we propose a method to compute the full distribution to an arbitrary level of precision, based on a graph analysis and forward analysis of the model. For MDPs, we approximate the optimal policy with respect to expected value or conditional value-at-risk using distributional value iteration. We implement our techniques and investigate their performance and scalability across a range of benchmark models. Experimental results demonstrate that our techniques can be successfully applied to check various distributional properties of large probabilistic models.

Strong blocking sets, introduced first in 2011 in connection with saturating sets, have recently gained a lot of attention due to their correspondence with minimal codes. In this paper, we dig into the geometry of the concatenation method, introducing the concept of outer strong blocking sets and their coding theoretical counterpart. We investigate their structure and provide bounds on their size. As a byproduct, we improve the best-known upper bound on the minimum size of a strong blocking set. Finally, we present a geometric construction of small strong blocking sets, whose computational cost is significantly smaller than the previously known ones.

Adversarial attack is a technique for deceiving Machine Learning (ML) models, which provides a way to evaluate the adversarial robustness. In practice, attack algorithms are artificially selected and tuned by human experts to break a ML system. However, manual selection of attackers tends to be sub-optimal, leading to a mistakenly assessment of model security. In this paper, a new procedure called Composite Adversarial Attack (CAA) is proposed for automatically searching the best combination of attack algorithms and their hyper-parameters from a candidate pool of \textbf{32 base attackers}. We design a search space where attack policy is represented as an attacking sequence, i.e., the output of the previous attacker is used as the initialization input for successors. Multi-objective NSGA-II genetic algorithm is adopted for finding the strongest attack policy with minimum complexity. The experimental result shows CAA beats 10 top attackers on 11 diverse defenses with less elapsed time (\textbf{6 $\times$ faster than AutoAttack}), and achieves the new state-of-the-art on $l_{\infty}$, $l_{2}$ and unrestricted adversarial attacks.

Graph neural networks (GNNs) have been widely used in representation learning on graphs and achieved state-of-the-art performance in tasks such as node classification and link prediction. However, most existing GNNs are designed to learn node representations on the fixed and homogeneous graphs. The limitations especially become problematic when learning representations on a misspecified graph or a heterogeneous graph that consists of various types of nodes and edges. In this paper, we propose Graph Transformer Networks (GTNs) that are capable of generating new graph structures, which involve identifying useful connections between unconnected nodes on the original graph, while learning effective node representation on the new graphs in an end-to-end fashion. Graph Transformer layer, a core layer of GTNs, learns a soft selection of edge types and composite relations for generating useful multi-hop connections so-called meta-paths. Our experiments show that GTNs learn new graph structures, based on data and tasks without domain knowledge, and yield powerful node representation via convolution on the new graphs. Without domain-specific graph preprocessing, GTNs achieved the best performance in all three benchmark node classification tasks against the state-of-the-art methods that require pre-defined meta-paths from domain knowledge.

Embedding models for deterministic Knowledge Graphs (KG) have been extensively studied, with the purpose of capturing latent semantic relations between entities and incorporating the structured knowledge into machine learning. However, there are many KGs that model uncertain knowledge, which typically model the inherent uncertainty of relations facts with a confidence score, and embedding such uncertain knowledge represents an unresolved challenge. The capturing of uncertain knowledge will benefit many knowledge-driven applications such as question answering and semantic search by providing more natural characterization of the knowledge. In this paper, we propose a novel uncertain KG embedding model UKGE, which aims to preserve both structural and uncertainty information of relation facts in the embedding space. Unlike previous models that characterize relation facts with binary classification techniques, UKGE learns embeddings according to the confidence scores of uncertain relation facts. To further enhance the precision of UKGE, we also introduce probabilistic soft logic to infer confidence scores for unseen relation facts during training. We propose and evaluate two variants of UKGE based on different learning objectives. Experiments are conducted on three real-world uncertain KGs via three tasks, i.e. confidence prediction, relation fact ranking, and relation fact classification. UKGE shows effectiveness in capturing uncertain knowledge by achieving promising results on these tasks, and consistently outperforms baselines on these tasks.

We investigate a lattice-structured LSTM model for Chinese NER, which encodes a sequence of input characters as well as all potential words that match a lexicon. Compared with character-based methods, our model explicitly leverages word and word sequence information. Compared with word-based methods, lattice LSTM does not suffer from segmentation errors. Gated recurrent cells allow our model to choose the most relevant characters and words from a sentence for better NER results. Experiments on various datasets show that lattice LSTM outperforms both word-based and character-based LSTM baselines, achieving the best results.

This paper proposes a method to modify traditional convolutional neural networks (CNNs) into interpretable CNNs, in order to clarify knowledge representations in high conv-layers of CNNs. In an interpretable CNN, each filter in a high conv-layer represents a certain object part. We do not need any annotations of object parts or textures to supervise the learning process. Instead, the interpretable CNN automatically assigns each filter in a high conv-layer with an object part during the learning process. Our method can be applied to different types of CNNs with different structures. The clear knowledge representation in an interpretable CNN can help people understand the logics inside a CNN, i.e., based on which patterns the CNN makes the decision. Experiments showed that filters in an interpretable CNN were more semantically meaningful than those in traditional CNNs.

北京阿比特科技有限公司