These lecture notes give an introduction to the mathematics of computer(ized) tomography (CT). Treated are the imaging principle of X-ray tomography, the Radon transform as mathematical model for the measurement process and its properties, the ill-posedness of the underlying mathematical reconstruction problem and classical reconstruction techniques. The required background from Fourier analysis is also briefly summarized.
This study introduces the Lower Ricci Curvature (LRC), a novel, scalable, and scale-free discrete curvature designed to enhance community detection in networks. Addressing the computational challenges posed by existing curvature-based methods, LRC offers a streamlined approach with linear computational complexity, making it well-suited for large-scale network analysis. We further develop an LRC-based preprocessing method that effectively augments popular community detection algorithms. Through comprehensive simulations and applications on real-world datasets, including the NCAA football league network, the DBLP collaboration network, the Amazon product co-purchasing network, and the YouTube social network, we demonstrate the efficacy of our method in significantly improving the performance of various community detection algorithms.
Signature-based techniques give mathematical insight into the interactions between complex streams of evolving data. These insights can be quite naturally translated into numerical approaches to understanding streamed data, and perhaps because of their mathematical precision, have proved useful in analysing streamed data in situations where the data is irregular, and not stationary, and the dimension of the data and the sample sizes are both moderate. Understanding streamed multi-modal data is exponential: a word in $n$ letters from an alphabet of size $d$ can be any one of $d^n$ messages. Signatures remove the exponential amount of noise that arises from sampling irregularity, but an exponential amount of information still remain. This survey aims to stay in the domain where that exponential scaling can be managed directly. Scalability issues are an important challenge in many problems but would require another survey article and further ideas. This survey describes a range of contexts where the data sets are small enough to remove the possibility of massive machine learning, and the existence of small sets of context free and principled features can be used effectively. The mathematical nature of the tools can make their use intimidating to non-mathematicians. The examples presented in this article are intended to bridge this communication gap and provide tractable working examples drawn from the machine learning context. Notebooks are available online for several of these examples. This survey builds on the earlier paper of Ilya Chevryev and Andrey Kormilitzin which had broadly similar aims at an earlier point in the development of this machinery. This article illustrates how the theoretical insights offered by signatures are simply realised in the analysis of application data in a way that is largely agnostic to the data type.
In the web era, graph machine learning has been widely used on ubiquitous graph-structured data. As a pivotal component for bolstering web security and enhancing the robustness of graph-based applications, the significance of graph anomaly detection is continually increasing. While Graph Neural Networks (GNNs) have demonstrated efficacy in supervised and semi-supervised graph anomaly detection, their performance is contingent upon the availability of sufficient ground truth labels. The labor-intensive nature of identifying anomalies from complex graph structures poses a significant challenge in real-world applications. Despite that, the indirect supervision signals from other tasks (e.g., node classification) are relatively abundant. In this paper, we propose a novel MultItask acTIve Graph Anomaly deTEction framework, namely MITIGATE. Firstly, by coupling node classification tasks, MITIGATE obtains the capability to detect out-of-distribution nodes without known anomalies. Secondly, MITIGATE quantifies the informativeness of nodes by the confidence difference across tasks, allowing samples with conflicting predictions to provide informative yet not excessively challenging information for subsequent training. Finally, to enhance the likelihood of selecting representative nodes that are distant from known patterns, MITIGATE adopts a masked aggregation mechanism for distance measurement, considering both inherent features of nodes and current labeled status. Empirical studies on four datasets demonstrate that MITIGATE significantly outperforms the state-of-the-art methods for anomaly detection. Our code is publicly available at: //github.com/AhaChang/MITIGATE.
With the rapid development of deep learning, training Big Models (BMs) for multiple downstream tasks becomes a popular paradigm. Researchers have achieved various outcomes in the construction of BMs and the BM application in many fields. At present, there is a lack of research work that sorts out the overall progress of BMs and guides the follow-up research. In this paper, we cover not only the BM technologies themselves but also the prerequisites for BM training and applications with BMs, dividing the BM review into four parts: Resource, Models, Key Technologies and Application. We introduce 16 specific BM-related topics in those four parts, they are Data, Knowledge, Computing System, Parallel Training System, Language Model, Vision Model, Multi-modal Model, Theory&Interpretability, Commonsense Reasoning, Reliability&Security, Governance, Evaluation, Machine Translation, Text Generation, Dialogue and Protein Research. In each topic, we summarize clearly the current studies and propose some future research directions. At the end of this paper, we conclude the further development of BMs in a more general view.
In this article, we will look at autoencoders. This article covers the mathematics and the fundamental concepts of autoencoders. We will discuss what they are, what the limitations are, the typical use cases, and we will look at some examples. We will start with a general introduction to autoencoders, and we will discuss the role of the activation function in the output layer and the loss function. We will then discuss what the reconstruction error is. Finally, we will look at typical applications as dimensionality reduction, classification, denoising, and anomaly detection. This paper contains the notes of a PhD-level lecture on autoencoders given in 2021.
Geometric deep learning (GDL), which is based on neural network architectures that incorporate and process symmetry information, has emerged as a recent paradigm in artificial intelligence. GDL bears particular promise in molecular modeling applications, in which various molecular representations with different symmetry properties and levels of abstraction exist. This review provides a structured and harmonized overview of molecular GDL, highlighting its applications in drug discovery, chemical synthesis prediction, and quantum chemistry. Emphasis is placed on the relevance of the learned molecular features and their complementarity to well-established molecular descriptors. This review provides an overview of current challenges and opportunities, and presents a forecast of the future of GDL for molecular sciences.
Graph neural networks (GNNs) is widely used to learn a powerful representation of graph-structured data. Recent work demonstrates that transferring knowledge from self-supervised tasks to downstream tasks could further improve graph representation. However, there is an inherent gap between self-supervised tasks and downstream tasks in terms of optimization objective and training data. Conventional pre-training methods may be not effective enough on knowledge transfer since they do not make any adaptation for downstream tasks. To solve such problems, we propose a new transfer learning paradigm on GNNs which could effectively leverage self-supervised tasks as auxiliary tasks to help the target task. Our methods would adaptively select and combine different auxiliary tasks with the target task in the fine-tuning stage. We design an adaptive auxiliary loss weighting model to learn the weights of auxiliary tasks by quantifying the consistency between auxiliary tasks and the target task. In addition, we learn the weighting model through meta-learning. Our methods can be applied to various transfer learning approaches, it performs well not only in multi-task learning but also in pre-training and fine-tuning. Comprehensive experiments on multiple downstream tasks demonstrate that the proposed methods can effectively combine auxiliary tasks with the target task and significantly improve the performance compared to state-of-the-art methods.
Recent contrastive representation learning methods rely on estimating mutual information (MI) between multiple views of an underlying context. E.g., we can derive multiple views of a given image by applying data augmentation, or we can split a sequence into views comprising the past and future of some step in the sequence. Contrastive lower bounds on MI are easy to optimize, but have a strong underestimation bias when estimating large amounts of MI. We propose decomposing the full MI estimation problem into a sum of smaller estimation problems by splitting one of the views into progressively more informed subviews and by applying the chain rule on MI between the decomposed views. This expression contains a sum of unconditional and conditional MI terms, each measuring modest chunks of the total MI, which facilitates approximation via contrastive bounds. To maximize the sum, we formulate a contrastive lower bound on the conditional MI which can be approximated efficiently. We refer to our general approach as Decomposed Estimation of Mutual Information (DEMI). We show that DEMI can capture a larger amount of MI than standard non-decomposed contrastive bounds in a synthetic setting, and learns better representations in a vision domain and for dialogue generation.
Behaviors of the synthetic characters in current military simulations are limited since they are generally generated by rule-based and reactive computational models with minimal intelligence. Such computational models cannot adapt to reflect the experience of the characters, resulting in brittle intelligence for even the most effective behavior models devised via costly and labor-intensive processes. Observation-based behavior model adaptation that leverages machine learning and the experience of synthetic entities in combination with appropriate prior knowledge can address the issues in the existing computational behavior models to create a better training experience in military training simulations. In this paper, we introduce a framework that aims to create autonomous synthetic characters that can perform coherent sequences of believable behavior while being aware of human trainees and their needs within a training simulation. This framework brings together three mutually complementary components. The first component is a Unity-based simulation environment - Rapid Integration and Development Environment (RIDE) - supporting One World Terrain (OWT) models and capable of running and supporting machine learning experiments. The second is Shiva, a novel multi-agent reinforcement and imitation learning framework that can interface with a variety of simulation environments, and that can additionally utilize a variety of learning algorithms. The final component is the Sigma Cognitive Architecture that will augment the behavior models with symbolic and probabilistic reasoning capabilities. We have successfully created proof-of-concept behavior models leveraging this framework on realistic terrain as an essential step towards bringing machine learning into military simulations.
Embedding entities and relations into a continuous multi-dimensional vector space have become the dominant method for knowledge graph embedding in representation learning. However, most existing models ignore to represent hierarchical knowledge, such as the similarities and dissimilarities of entities in one domain. We proposed to learn a Domain Representations over existing knowledge graph embedding models, such that entities that have similar attributes are organized into the same domain. Such hierarchical knowledge of domains can give further evidence in link prediction. Experimental results show that domain embeddings give a significant improvement over the most recent state-of-art baseline knowledge graph embedding models.