亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

LiDAR panoptic segmentation facilitates an autonomous vehicle to comprehensively understand the surrounding objects and scenes and is required to run in real time. The recent proposal-free methods accelerate the algorithm, but their effectiveness and efficiency are still limited owing to the difficulty of modeling non-existent instance centers and the costly center-based clustering modules. To achieve accurate and real-time LiDAR panoptic segmentation, a novel center focusing network (CFNet) is introduced. Specifically, the center focusing feature encoding (CFFE) is proposed to explicitly understand the relationships between the original LiDAR points and virtual instance centers by shifting the LiDAR points and filling in the center points. Moreover, to leverage the redundantly detected centers, a fast center deduplication module (CDM) is proposed to select only one center for each instance. Experiments on the SemanticKITTI and nuScenes panoptic segmentation benchmarks demonstrate that our CFNet outperforms all existing methods by a large margin and is 1.6 times faster than the most efficient method. The code is available at //github.com/GangZhang842/CFNet.

相關內容

We propose a novel set of Poisson Cluster Process (PCP) models to detect Ultra-Diffuse Galaxies (UDGs), a class of extremely faint, enigmatic galaxies of substantial interest in modern astrophysics. We model the unobserved UDG locations as parent points in a PCP, and infer their positions based on the observed spatial point patterns of their old star cluster systems. Many UDGs have somewhere from a few to hundreds of these old star clusters, which we treat as offspring points in our models. We also present a new framework to construct a marked PCP model using the marks of star clusters. The marked PCP model may enhance the detection of UDGs and offers broad applicability to problems in other disciplines. To assess the overall model performance, we design an innovative assessment tool for spatial prediction problems where only point-referenced ground truth is available, overcoming the limitation of standard ROC analyses where spatial Boolean reference maps are required. We construct a bespoke blocked Gibbs adaptive spatial birth-death-move MCMC algorithm to infer the locations of UDGs using real data from a \textit{Hubble Space Telescope} imaging survey. Based on our performance assessment tool, our novel models significantly outperform existing approaches using the Log-Gaussian Cox Process. We also obtained preliminary evidence that the marked PCP model improves UDG detection performance compared to the model without marks. Furthermore, we find evidence of a potential new ``dark galaxy'' that was not detected by previous methods.

Recent improvements in adder optimization could be achieved by optimizing the AND-trees occurring within the constructed circuits. The overlap of such trees and its potential for pure size optimization has not been taken into account though. Motivated by this, we examine the fundamental problem of minimizing the size of a circuit for multiple AND-functions on intersecting variable sets. Our formulation generalizes the overlapping \AND-trees within adder optimization but is in NP, in contrast to general Boolean circuit optimization which is in $\Sigma_2^p$ (and thus suspected not to be in NP). While restructuring the AND- or XOR-trees simultaneously, we optimize the total number of gates needed for all functions to be computed. We show that this problem is APX-hard already for functions of few variables and present efficient approximation algorithms for the case in which the Boolean functions depend on at most 3 or 4 variables each, achieving guarantees of $\frac 43$ and $1.9$, respectively. To conclude, we give a polynomial approximation algorithm with guarantee $\frac 23k$ for AND-functions of up to $k$ variables. To achieve these results, the key technique is to determine how much overlap among the variable sets makes tree construction cheap and how little makes the optimum solution large.

The technical limitations of the intelligent reflecting surface (IRS) (re)configurations in terms of both communication overhead and energy efficiency must be considered when IRSs are used in cellular networks. In this paper, we investigate the downlink time-frequency scheduling of an IRS-assisted multi-user system in the orthogonal frequency-division multiple access (OFDMA) framework wherein both the set of possible IRS configurations and the number of IRS reconfigurations within a time frame are limited. We formulate the sum rate maximization problem as a non-polynomial (NP)-complete generalized multi-knapsack problem. A heuristic greedy algorithm for the joint IRS configuration and time-frequency scheduling is also proposed. Numerical simulations prove the effectiveness of our greedy solution.

We develop a distributed Block Chebyshev-Davidson algorithm to solve large-scale leading eigenvalue problems for spectral analysis in spectral clustering. First, the efficiency of the Chebyshev-Davidson algorithm relies on the prior knowledge of the eigenvalue spectrum, which could be expensive to estimate. This issue can be lessened by the analytic spectrum estimation of the Laplacian or normalized Laplacian matrices in spectral clustering, making the proposed algorithm very efficient for spectral clustering. Second, to make the proposed algorithm capable of analyzing big data, a distributed and parallel version has been developed with attractive scalability. The speedup by parallel computing is approximately equivalent to $\sqrt{p}$, where $p$ denotes the number of processes. {Numerical results will be provided to demonstrate its efficiency in spectral clustering and scalability advantage over existing eigensolvers used for spectral clustering in parallel computing environments.}

Humans interpret scenes by recognizing both the identities and positions of objects in their observations. For a robot to perform tasks such as \enquote{pick and place}, understanding both what the objects are and where they are located is crucial. While the former has been extensively discussed in the literature that uses the large language model to enrich the text descriptions, the latter remains underexplored. In this work, we introduce the \textit{Object-Centric Instruction Augmentation (OCI)} framework to augment highly semantic and information-dense language instruction with position cues. We utilize a Multi-modal Large Language Model (MLLM) to weave knowledge of object locations into natural language instruction, thus aiding the policy network in mastering actions for versatile manipulation. Additionally, we present a feature reuse mechanism to integrate the vision-language features from off-the-shelf pre-trained MLLM into policy networks. Through a series of simulated and real-world robotic tasks, we demonstrate that robotic manipulator imitation policies trained with our enhanced instructions outperform those relying solely on traditional language instructions.

Existing recurrent optical flow estimation networks are computationally expensive since they use a fixed large number of iterations to update the flow field for each sample. An efficient network should skip iterations when the flow improvement is limited. In this paper, we develop a Context-Aware Iteration Policy Network for efficient optical flow estimation, which determines the optimal number of iterations per sample. The policy network achieves this by learning contextual information to realize whether flow improvement is bottlenecked or minimal. On the one hand, we use iteration embedding and historical hidden cell, which include previous iterations information, to convey how flow has changed from previous iterations. On the other hand, we use the incremental loss to make the policy network implicitly perceive the magnitude of optical flow improvement in the subsequent iteration. Furthermore, the computational complexity in our dynamic network is controllable, allowing us to satisfy various resource preferences with a single trained model. Our policy network can be easily integrated into state-of-the-art optical flow networks. Extensive experiments show that our method maintains performance while reducing FLOPs by about 40%/20% for the Sintel/KITTI datasets.

3D panoptic segmentation is a challenging perception task, which aims to predict both semantic and instance annotations for 3D points in a scene. Although prior 3D panoptic segmentation approaches have achieved great performance on closed-set benchmarks, generalizing to novel categories remains an open problem. For unseen object categories, 2D open-vocabulary segmentation has achieved promising results that solely rely on frozen CLIP backbones and ensembling multiple classification outputs. However, we find that simply extending these 2D models to 3D does not achieve good performance due to poor per-mask classification quality on novel categories. In this paper, we propose the first method to tackle 3D open-vocabulary panoptic segmentation. Our model takes advantage of the fusion between learnable LiDAR features and dense frozen vision CLIP features, using a single classification head to make predictions for both base and novel classes. To further improve the classification performance on novel classes and leverage the CLIP model, we propose two novel loss functions: object-level distillation loss and voxel-level distillation loss. Our experiments on the nuScenes and SemanticKITTI datasets show that our method outperforms strong baselines by a large margin.

Many biological processes display oscillatory behavior based on an approximately 24 hour internal timing system specific to each individual. One process of particular interest is gene expression, for which several circadian transcriptomic studies have identified associations between gene expression during a 24 hour period and an individual's health. A challenge with analyzing data from these studies is that each individual's internal timing system is offset relative to the 24 hour day-night cycle, where day-night cycle time is recorded for each collected sample. Laboratory procedures can accurately determine each individual's offset and determine the internal time of sample collection. However, these laboratory procedures are labor-intensive and expensive. In this paper, we propose a corrected score function framework to obtain a regression model of gene expression given internal time when the offset of each individual is too burdensome to determine. A feature of this framework is that it does not require the probability distribution generating offsets to be symmetric with a mean of zero. Simulation studies validate the use of this corrected score function framework for cosinor regression, which is prevalent in circadian transcriptomic studies. Illustrations with three real circadian transcriptomic data sets further demonstrate that the proposed framework consistently mitigates bias relative to using a score function that does not account for this offset.

Humans and animals have the ability to continually acquire, fine-tune, and transfer knowledge and skills throughout their lifespan. This ability, referred to as lifelong learning, is mediated by a rich set of neurocognitive mechanisms that together contribute to the development and specialization of our sensorimotor skills as well as to long-term memory consolidation and retrieval. Consequently, lifelong learning capabilities are crucial for autonomous agents interacting in the real world and processing continuous streams of information. However, lifelong learning remains a long-standing challenge for machine learning and neural network models since the continual acquisition of incrementally available information from non-stationary data distributions generally leads to catastrophic forgetting or interference. This limitation represents a major drawback for state-of-the-art deep neural network models that typically learn representations from stationary batches of training data, thus without accounting for situations in which information becomes incrementally available over time. In this review, we critically summarize the main challenges linked to lifelong learning for artificial learning systems and compare existing neural network approaches that alleviate, to different extents, catastrophic forgetting. We discuss well-established and emerging research motivated by lifelong learning factors in biological systems such as structural plasticity, memory replay, curriculum and transfer learning, intrinsic motivation, and multisensory integration.

Multi-relation Question Answering is a challenging task, due to the requirement of elaborated analysis on questions and reasoning over multiple fact triples in knowledge base. In this paper, we present a novel model called Interpretable Reasoning Network that employs an interpretable, hop-by-hop reasoning process for question answering. The model dynamically decides which part of an input question should be analyzed at each hop; predicts a relation that corresponds to the current parsed results; utilizes the predicted relation to update the question representation and the state of the reasoning process; and then drives the next-hop reasoning. Experiments show that our model yields state-of-the-art results on two datasets. More interestingly, the model can offer traceable and observable intermediate predictions for reasoning analysis and failure diagnosis, thereby allowing manual manipulation in predicting the final answer.

北京阿比特科技有限公司