亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

We aim to make inferences about a smooth, finite-dimensional parameter by fusing data from multiple sources together. Previous works have studied the estimation of a variety of parameters in similar data fusion settings, including in the estimation of the average treatment effect, optimal treatment rule, and average reward, with the majority of them merging one historical data source with covariates, actions, and rewards and one data source of the same covariates. In this work, we consider the general case where one or more data sources align with each part of the distribution of the target population, for example, the conditional distribution of the reward given actions and covariates. We describe potential gains in efficiency that can arise from fusing these data sources together in a single analysis, which we characterize by a reduction in the semiparametric efficiency bound. We also provide a general means to construct estimators that achieve these bounds. In numerical experiments, we show marked improvements in efficiency from using our proposed estimators rather than their natural alternatives. Finally, we illustrate the magnitude of efficiency gains that can be realized in vaccine immunogenicity studies by fusing data from two HIV vaccine trials.

相關內容

We propose a new wavelet-based method for density estimation when the data are size-biased. More specifically, we consider a power of the density of interest, where this power exceeds 1/2. Warped wavelet bases are employed, where warping is attained by some continuous cumulative distribution function. This can be seen as a general framework in which the conventional orthonormal wavelet estimation is the case where warping distribution is the standard uniform c.d.f. We show that both linear and nonlinear wavelet estimators are consistent, with optimal and/or near-optimal rates. Monte Carlo simulations are performed to compare four special settings which are easy to interpret in practice. An application with a real dataset on fatal traffic accidents involving alcohol illustrates the method. We observe that warped bases provide more flexible and superior estimates for both simulated and real data. Moreover, we find that estimating the power of a density (for instance, its square root) further improves the results.

The FOU(p) processes can be considered as an alternative to ARMA (or ARFIMA) processes to model time series. Also, there is no substantial loss when we model a time series using FOU(p) processes with the same lambda, than using differents values of lambda. In this work we propose a new method to estimate the unique value of lambda in a FOU(p) process. Under certain conditions, we will prove consistency and asymptotic normality. We will show that this new method is more easy and fast to compute. By simulations, we show that the new procedure work well and is more efficient than the general method. Also, we include an application to real data, and we show that the new method work well too and outperforms the family of ARMA(p, q).

Reinforcement Learning (RL) has the promise of providing data-driven support for decision-making in a wide range of problems in healthcare, education, business, and other domains. Classical RL methods focus on the mean of the total return and, thus, may provide misleading results in the setting of the heterogeneous populations that commonly underlie large-scale datasets. We introduce the K-Heterogeneous Markov Decision Process (K-Hetero MDP) to address sequential decision problems with population heterogeneity. We propose the Auto-Clustered Policy Evaluation (ACPE) for estimating the value of a given policy, and the Auto-Clustered Policy Iteration (ACPI) for estimating the optimal policy in a given policy class. Our auto-clustered algorithms can automatically detect and identify homogeneous sub-populations, while estimating the Q function and the optimal policy for each sub-population. We establish convergence rates and construct confidence intervals for the estimators obtained by the ACPE and ACPI. We present simulations to support our theoretical findings, and we conduct an empirical study on the standard MIMIC-III dataset. The latter analysis shows evidence of value heterogeneity and confirms the advantages of our new method.

We study regression adjustments with additional covariates in randomized experiments under covariate-adaptive randomizations (CARs) when subject compliance is imperfect. We develop a regression-adjusted local average treatment effect (LATE) estimator that is proven to improve efficiency in the estimation of LATEs under CARs. Our adjustments can be parametric in linear and nonlinear forms, nonparametric, and high-dimensional. Even when the adjustments are misspecified, our proposed estimator is still consistent and asymptotically normal, and their inference method still achieves the exact asymptotic size under the null. When the adjustments are correctly specified, our estimator achieves the minimum asymptotic variance. When the adjustments are parametrically misspecified, we construct a new estimator which is weakly more efficient than linearly and nonlinearly adjusted estimators, as well as the one without any adjustments. Simulation evidence and empirical application confirm efficiency gains achieved by regression adjustments relative to both the estimator without adjustment and the standard two-stage least squares estimator.

Estimation of causal effects using machine learning methods has become an active research field in econometrics. In this paper, we study the finite sample performance of meta-learners for estimation of heterogeneous treatment effects under the usage of sample-splitting and cross-fitting to reduce the overfitting bias. In both synthetic and semi-synthetic simulations we find that the performance of the meta-learners in finite samples greatly depends on the estimation procedure. The results imply that sample-splitting and cross-fitting are beneficial in large samples for bias reduction and efficiency of the meta-learners, respectively, whereas full-sample estimation is preferable in small samples. Furthermore, we derive practical recommendations for application of specific meta-learners in empirical studies depending on particular data characteristics such as treatment shares and sample size.

Optimum parameter estimation methods require knowledge of a parametric probability density that statistically describes the available observations. In this work we examine Bayesian and non-Bayesian parameter estimation problems under a data-driven formulation where the necessary parametric probability density is replaced by available data. We present various data-driven versions that either result in neural network approximations of the optimum estimators or in well defined optimization problems that can be solved numerically. In particular, for the data-driven equivalent of non-Bayesian estimation we end up with optimization problems similar to the ones encountered for the design of generative networks.

Recently, conditional average treatment effect (CATE) estimation has been attracting much attention due to its importance in various fields such as statistics, social and biomedical sciences. This study proposes a partially linear nonparametric Bayes model for the heterogeneous treatment effect estimation. A partially linear model is a semiparametric model that consists of linear and nonparametric components in an additive form. A nonparametric Bayes model that uses a Gaussian process to model the nonparametric component has already been studied. However, this model cannot handle the heterogeneity of the treatment effect. In our proposed model, not only the nonparametric component of the model but also the heterogeneous treatment effect of the treatment variable is modeled by a Gaussian process prior. We derive the analytic form of the posterior distribution of the CATE and prove that the posterior has the consistency property. That is, it concentrates around the true distribution. We show the effectiveness of the proposed method through numerical experiments based on synthetic data.

Long-term outcomes of experimental evaluations are necessarily observed after long delays. We develop semiparametric methods for combining the short-term outcomes of an experimental evaluation with observational measurements of the joint distribution of short-term and long-term outcomes to estimate long-term treatment effects. We characterize semiparametric efficiency bounds for estimation of the average effect of a treatment on a long-term outcome in several instances of this problem. These calculations facilitate the construction of semiparametrically efficient estimators. The finite-sample performance of these estimators is analyzed with a simulation calibrated to a randomized evaluation of the long-term effects of a poverty alleviation program.

Implicit probabilistic models are models defined naturally in terms of a sampling procedure and often induces a likelihood function that cannot be expressed explicitly. We develop a simple method for estimating parameters in implicit models that does not require knowledge of the form of the likelihood function or any derived quantities, but can be shown to be equivalent to maximizing likelihood under some conditions. Our result holds in the non-asymptotic parametric setting, where both the capacity of the model and the number of data examples are finite. We also demonstrate encouraging experimental results.

Many problems on signal processing reduce to nonparametric function estimation. We propose a new methodology, piecewise convex fitting (PCF), and give a two-stage adaptive estimate. In the first stage, the number and location of the change points is estimated using strong smoothing. In the second stage, a constrained smoothing spline fit is performed with the smoothing level chosen to minimize the MSE. The imposed constraint is that a single change point occurs in a region about each empirical change point of the first-stage estimate. This constraint is equivalent to requiring that the third derivative of the second-stage estimate has a single sign in a small neighborhood about each first-stage change point. We sketch how PCF may be applied to signal recovery, instantaneous frequency estimation, surface reconstruction, image segmentation, spectral estimation and multivariate adaptive regression.

北京阿比特科技有限公司