Complaining is a speech act that expresses a negative inconsistency between reality and human expectations. While prior studies mostly focus on identifying the existence or the type of complaints, in this work, we present the first study in computational linguistics of measuring the intensity of complaints from text. Analyzing complaints from such perspective is particularly useful, as complaints of certain degrees may cause severe consequences for companies or organizations. We create the first Chinese dataset containing 3,103 posts about complaints from Weibo, a popular Chinese social media platform. These posts are then annotated with complaints intensity scores using Best-Worst Scaling (BWS) method. We show that complaints intensity can be accurately estimated by computational models with the best mean square error achieving 0.11. Furthermore, we conduct a comprehensive linguistic analysis around complaints, including the connections between complaints and sentiment, and a cross-lingual comparison for complaints expressions used by Chinese and English speakers. We finally show that our complaints intensity scores can be incorporated for better estimating the popularity of posts on social media.
We study the reduction in a lambda-calculus derived from Moggi's computational one, that we call the computational core. The reduction relation consists of rules obtained by orienting three monadic laws. Such laws, in particular associativity and identity, introduce intricacies in the operational analysis. We investigate the central notions of returning a value versus having a normal form, and address the question of normalizing strategies. Our analysis relies on factorization results.
Depth estimation features are helpful for 3D recognition. Commodity-grade depth cameras are able to capture depth and color image in real-time. However, glossy, transparent or distant surface cannot be scanned properly by the sensor. As a result, enhancement and restoration from sensing depth is an important task. Depth completion aims at filling the holes that sensors fail to detect, which is still a complex task for machine to learn. Traditional hand-tuned methods have reached their limits, while neural network based methods tend to copy and interpolate the output from surrounding depth values. This leads to blurred boundaries, and structures of the depth map are lost. Consequently, our main work is to design an end-to-end network improving completion depth maps while maintaining edge clarity. We utilize self-attention mechanism, previously used in image inpainting fields, to extract more useful information in each layer of convolution so that the complete depth map is enhanced. In addition, we propose boundary consistency concept to enhance the depth map quality and structure. Experimental results validate the effectiveness of our self-attention and boundary consistency schema, which outperforms previous state-of-the-art depth completion work on Matterport3D dataset. Our code is publicly available at //github.com/tsunghan-wu/Depth-Completion.
Curbing online hate speech has become the need of the hour; however, a blanket ban on such activities is infeasible for several geopolitical and cultural reasons. To reduce the severity of the problem, in this paper, we introduce a novel task, hate speech normalization, that aims to weaken the intensity of hatred exhibited by an online post. The intention of hate speech normalization is not to support hate but instead to provide the users with a stepping stone towards non-hate while giving online platforms more time to monitor any improvement in the user's behavior. To this end, we manually curated a parallel corpus - hate texts and their normalized counterparts (a normalized text is less hateful and more benign). We introduce NACL, a simple yet efficient hate speech normalization model that operates in three stages - first, it measures the hate intensity of the original sample; second, it identifies the hate span(s) within it; and finally, it reduces hate intensity by paraphrasing the hate spans. We perform extensive experiments to measure the efficacy of NACL via three-way evaluation (intrinsic, extrinsic, and human-study). We observe that NACL outperforms six baselines - NACL yields a score of 0.1365 RMSE for the intensity prediction, 0.622 F1-score in the span identification, and 82.27 BLEU and 80.05 perplexity for the normalized text generation. We further show the generalizability of NACL across other platforms (Reddit, Facebook, Gab). An interactive prototype of NACL was put together for the user study. Further, the tool is being deployed in a real-world setting at Wipro AI as a part of its mission to tackle harmful content on online platforms.
Social media is increasingly used for large-scale population predictions, such as estimating community health statistics. However, social media users are not typically a representative sample of the intended population -- a "selection bias". Within the social sciences, such a bias is typically addressed with restratification techniques, where observations are reweighted according to how under- or over-sampled their socio-demographic groups are. Yet, restratifaction is rarely evaluated for improving prediction. In this two-part study, we first evaluate standard, "out-of-the-box" restratification techniques, finding they provide no improvement and often even degraded prediction accuracies across four tasks of esimating U.S. county population health statistics from Twitter. The core reasons for degraded performance seem to be tied to their reliance on either sparse or shrunken estimates of each population's socio-demographics. In the second part of our study, we develop and evaluate Robust Poststratification, which consists of three methods to address these problems: (1) estimator redistribution to account for shrinking, as well as (2) adaptive binning and (3) informed smoothing to handle sparse socio-demographic estimates. We show that each of these methods leads to significant improvement in prediction accuracies over the standard restratification approaches. Taken together, Robust Poststratification enables state-of-the-art prediction accuracies, yielding a 53.0% increase in variance explained (R^2) in the case of surveyed life satisfaction, and a 17.8% average increase across all tasks.
In many areas of interest, modern risk assessment requires estimation of the extremal behaviour of sums of random variables. We derive the first order upper-tail behaviour of the weighted sum of bivariate random variables under weak assumptions on their marginal distributions and their copula. The extremal behaviour of the marginal variables is characterised by the generalised Pareto distribution and their extremal dependence through subclasses of the limiting representations of Ledford and Tawn (1997) and Heffernan and Tawn (2004). We find that the upper tail behaviour of the aggregate is driven by different factors dependent on the signs of the marginal shape parameters; if they are both negative, the extremal behaviour of the aggregate is determined by both marginal shape parameters and the coefficient of asymptotic independence (Ledford and Tawn, 1996); if they are both positive or have different signs, the upper-tail behaviour of the aggregate is given solely by the largest marginal shape. We also derive the aggregate upper-tail behaviour for some well known copulae which reveals further insight into the tail structure when the copula falls outside the conditions for the subclasses of the limiting dependence representations.
Unsupervised black-box models are challenging to interpret. Indeed, most existing explainability methods require labels to select which component(s) of the black-box's output to interpret. In the absence of labels, black-box outputs often are representation vectors whose components do not correspond to any meaningful quantity. Hence, choosing which component(s) to interpret in a label-free unsupervised/self-supervised setting is an important, yet unsolved problem. To bridge this gap in the literature, we introduce two crucial extensions of post-hoc explanation techniques: (1) label-free feature importance and (2) label-free example importance that respectively highlight influential features and training examples for a black-box to construct representations at inference time. We demonstrate that our extensions can be successfully implemented as simple wrappers around many existing feature and example importance methods. We illustrate the utility of our label-free explainability paradigm through a qualitative and quantitative comparison of representation spaces learned by various autoencoders trained on distinct unsupervised tasks.
Aspect-based Sentiment Analysis (ABSA) helps to explain customers' opinions towards products and services. In the past, ABSA models were discriminative, but more recently generative models have been used to generate aspects and polarities directly from text. In contrast, discriminative models commonly first select aspects from the text, and then classify the aspect's polarity. Previous results showed that generative models outperform discriminative models on several English ABSA datasets. Here, we evaluate and contrast two state-of-the-art discriminative and generative models in several settings: cross-lingual, cross-domain, and cross-lingual and domain, to understand generalizability in settings other than English mono-lingual in-domain. Our more thorough evaluation shows that, contrary to previous studies, discriminative models can still outperform generative models in almost all settings.
This paper focuses on the expected difference in borrower's repayment when there is a change in the lender's credit decisions. Classical estimators overlook the confounding effects and hence the estimation error can be magnificent. As such, we propose another approach to construct the estimators such that the error can be greatly reduced. The proposed estimators are shown to be unbiased, consistent, and robust through a combination of theoretical analysis and numerical testing. Moreover, we compare the power of estimating the causal quantities between the classical estimators and the proposed estimators. The comparison is tested across a wide range of models, including linear regression models, tree-based models, and neural network-based models, under different simulated datasets that exhibit different levels of causality, different degrees of nonlinearity, and different distributional properties. Most importantly, we apply our approaches to a large observational dataset provided by a global technology firm that operates in both the e-commerce and the lending business. We find that the relative reduction of estimation error is strikingly substantial if the causal effects are accounted for correctly.
In recent years, Graph Neural Networks (GNNs), which can naturally integrate node information and topological structure, have been demonstrated to be powerful in learning on graph data. These advantages of GNNs provide great potential to advance social recommendation since data in social recommender systems can be represented as user-user social graph and user-item graph; and learning latent factors of users and items is the key. However, building social recommender systems based on GNNs faces challenges. For example, the user-item graph encodes both interactions and their associated opinions; social relations have heterogeneous strengths; users involve in two graphs (e.g., the user-user social graph and the user-item graph). To address the three aforementioned challenges simultaneously, in this paper, we present a novel graph neural network framework (GraphRec) for social recommendations. In particular, we provide a principled approach to jointly capture interactions and opinions in the user-item graph and propose the framework GraphRec, which coherently models two graphs and heterogeneous strengths. Extensive experiments on two real-world datasets demonstrate the effectiveness of the proposed framework GraphRec. Our code is available at \url{//github.com/wenqifan03/GraphRec-WWW19}
Aspect based sentiment analysis (ABSA) can provide more detailed information than general sentiment analysis, because it aims to predict the sentiment polarities of the given aspects or entities in text. We summarize previous approaches into two subtasks: aspect-category sentiment analysis (ACSA) and aspect-term sentiment analysis (ATSA). Most previous approaches employ long short-term memory and attention mechanisms to predict the sentiment polarity of the concerned targets, which are often complicated and need more training time. We propose a model based on convolutional neural networks and gating mechanisms, which is more accurate and efficient. First, the novel Gated Tanh-ReLU Units can selectively output the sentiment features according to the given aspect or entity. The architecture is much simpler than attention layer used in the existing models. Second, the computations of our model could be easily parallelized during training, because convolutional layers do not have time dependency as in LSTM layers, and gating units also work independently. The experiments on SemEval datasets demonstrate the efficiency and effectiveness of our models.