While federated learning has shown strong results in optimizing a machine learning model without direct access to the original data, its performance may be hindered by intermittent client availability which slows down the convergence and biases the final learned model. There are significant challenges to achieve both stable and bias-free training under arbitrary client availability. To address these challenges, we propose a framework named Federated Graph-based Sampling (FedGS), to stabilize the global model update and mitigate the long-term bias given arbitrary client availability simultaneously. First, we model the data correlations of clients with a Data-Distribution-Dependency Graph (3DG) that helps keep the sampled clients data apart from each other, which is theoretically shown to improve the approximation to the optimal model update. Second, constrained by the far-distance in data distribution of the sampled clients, we further minimize the variance of the numbers of times that the clients are sampled, to mitigate long-term bias. To validate the effectiveness of FedGS, we conduct experiments on three datasets under a comprehensive set of seven client availability modes. Our experimental results confirm FedGS's advantage in both enabling a fair client-sampling scheme and improving the model performance under arbitrary client availability. Our code is available at \url{//github.com/WwZzz/FedGS}.
Federated learning (FL) is a hot collaborative training framework via aggregating model parameters of decentralized local clients. However, most existing models unreasonably assume that data categories of FL framework are known and fxed in advance. It renders the global model to signifcantly degrade recognition performance on old categories (i.e., catastrophic forgetting), when local clients receive new categories consecutively under limited memory of storing old categories. Moreover, some new local clients that collect novel categories unseen by other clients may be introduced to the FL training irregularly, which further exacerbates the catastrophic forgetting on old categories. To tackle the above issues, we propose a novel Local-Global Anti-forgetting (LGA) model to address local and global catastrophic forgetting on old categories, which is a pioneering work to explore a global class-incremental model in the FL feld. Specifcally, considering tackling class imbalance of local client to surmount local forgetting, we develop a category-balanced gradient-adaptive compensation loss and a category gradient-induced semantic distillation loss. They can balance heterogeneous forgetting speeds of hard-to-forget and easy-to-forget old categories, while ensure intrinsic class relations consistency within different incremental tasks. Moreover, a proxy server is designed to tackle global forgetting caused by Non-IID class imbalance between different clients. It collects perturbed prototype images of new categories from local clients via prototype gradient communication under privacy preservation, and augments them via self-supervised prototype augmentation to choose the best old global model and improve local distillation gain. Experiments on representative datasets verify superior performance of our model against other comparison methods.
Out-of-distribution (OOD) generalization, where the model needs to handle distribution shifts from training, is a major challenge of machine learning. Recently, contrastive language-image pre-training (CLIP) models have shown impressive zero-shot ability, revealing a promising path toward OOD generalization. However, to boost upon zero-shot performance, further adaptation of CLIP on downstream tasks is indispensable but undesirably degrades OOD generalization ability. In this paper, we aim at generalizing CLIP to out-of-distribution test data on downstream tasks. Beyond the two canonical OOD situations, domain shift and open class, we tackle a more general but difficult in-the-wild setting where both OOD situations may occur on the unseen test data. We propose CLIPood, a simple fine-tuning method that can adapt CLIP models to all OOD situations. To exploit semantic relations between classes from the text modality, CLIPood introduces a new training objective, margin metric softmax (MMS), with class adaptive margins for fine-tuning. Moreover, to incorporate both the pre-trained zero-shot model and the fine-tuned task-adaptive model, CLIPood proposes a new Beta moving average (BMA) to maintain a temporal ensemble according to Beta distribution. Experiments on diverse datasets with different OOD scenarios show that CLIPood consistently outperforms existing generalization techniques.
Gradient Balancing (GraB) is a recently proposed technique that finds provably better data permutations when training models with multiple epochs over a finite dataset. It converges at a faster rate than the widely adopted Random Reshuffling, by minimizing the discrepancy of the gradients on adjacently selected examples. However, GraB only operates under critical assumptions such as small batch sizes and centralized data, leaving open the question of how to order examples at large scale -- i.e. distributed learning with decentralized data. To alleviate the limitation, in this paper we propose D-GraB that involves two novel designs: (1) $\textsf{PairBalance}$ that eliminates the requirement to use stale gradient mean in GraB which critically relies on small learning rates; (2) an ordering protocol that runs $\textsf{PairBalance}$ in a distributed environment with negligible overhead, which benefits from both data ordering and parallelism. We prove D-GraB enjoys linear speed up at rate $\tilde{O}((mnT)^{-2/3})$ on smooth non-convex objectives and $\tilde{O}((mnT)^{-2})$ under PL condition, where $n$ denotes the number of parallel workers, $m$ denotes the number of examples per worker and $T$ denotes the number of epochs. Empirically, we show on various applications including GLUE, CIFAR10 and WikiText-2 that D-GraB outperforms naive parallel GraB and Distributed Random Reshuffling in terms of both training and validation performance.
In this work, we quantitatively calibrate the performance of global and local models in federated learning through a multi-criterion optimization-based framework, which we cast as a constrained program. The objective of a device is its local objective, which it seeks to minimize while satisfying nonlinear constraints that quantify the proximity between the local and the global model. By considering the Lagrangian relaxation of this problem, we develop a novel primal-dual method called Federated Learning Beyond Consensus (\texttt{FedBC}). Theoretically, we establish that \texttt{FedBC} converges to a first-order stationary point at rates that matches the state of the art, up to an additional error term that depends on a tolerance parameter introduced to scalarize the multi-criterion formulation. Finally, we demonstrate that \texttt{FedBC} balances the global and local model test accuracy metrics across a suite of datasets (Synthetic, MNIST, CIFAR-10, Shakespeare), achieving competitive performance with state-of-the-art.
We present Cross-Client Label Propagation(XCLP), a new method for transductive federated learning. XCLP estimates a data graph jointly from the data of multiple clients and computes labels for the unlabeled data by propagating label information across the graph. To avoid clients having to share their data with anyone, XCLP employs two cryptographically secure protocols: secure Hamming distance computation and secure summation. We demonstrate two distinct applications of XCLP within federated learning. In the first, we use it in a one-shot way to predict labels for unseen test points. In the second, we use it to repeatedly pseudo-label unlabeled training data in a federated semi-supervised setting. Experiments on both real federated and standard benchmark datasets show that in both applications XCLP achieves higher classification accuracy than alternative approaches.
In this paper, we study the identifiability and the estimation of the parameters of a copula-based multivariate model when the margins are unknown and are arbitrary, meaning that they can be continuous, discrete, or mixtures of continuous and discrete. When at least one margin is not continuous, the range of values determining the copula is not the entire unit square and this situation could lead to identifiability issues that are discussed here. Next, we propose estimation methods when the margins are unknown and arbitrary, using pseudo log-likelihood adapted to the case of discontinuities. In view of applications to large data sets, we also propose a pairwise composite pseudo log-likelihood. These methodologies can also be easily modified to cover the case of parametric margins. One of the main theoretical result is an extension to arbitrary distributions of known convergence results of rank-based statistics when the margins are continuous. As a by-product, under smoothness assumptions, we obtain that the asymptotic distribution of the estimation errors of our estimators are Gaussian. Finally, numerical experiments are presented to assess the finite sample performance of the estimators, and the usefulness of the proposed methodologies is illustrated with a copula-based regression model for hydrological data.
The analysis of data stored in multiple sites has become more popular, raising new concerns about the security of data storage and communication. Federated learning, which does not require centralizing data, is a common approach to preventing heavy data transportation, securing valued data, and protecting personal information protection. Therefore, determining how to aggregate the information obtained from the analysis of data in separate local sites has become an important statistical issue. The commonly used averaging methods may not be suitable due to data nonhomogeneity and incomparable results among individual sites, and applying them may result in the loss of information obtained from the individual analyses. Using a sequential method in federated learning with distributed computing can facilitate the integration and accelerate the analysis process. We develop a data-driven method for efficiently and effectively aggregating valued information by analyzing local data without encountering potential issues such as information security and heavy transportation due to data communication. In addition, the proposed method can preserve the properties of classical sequential adaptive design, such as data-driven sample size and estimation precision when applied to generalized linear models. We use numerical studies of simulated data and an application to COVID-19 data collected from 32 hospitals in Mexico, to illustrate the proposed method.
The dominating NLP paradigm of training a strong neural predictor to perform one task on a specific dataset has led to state-of-the-art performance in a variety of applications (eg. sentiment classification, span-prediction based question answering or machine translation). However, it builds upon the assumption that the data distribution is stationary, ie. that the data is sampled from a fixed distribution both at training and test time. This way of training is inconsistent with how we as humans are able to learn from and operate within a constantly changing stream of information. Moreover, it is ill-adapted to real-world use cases where the data distribution is expected to shift over the course of a model's lifetime. The first goal of this thesis is to characterize the different forms this shift can take in the context of natural language processing, and propose benchmarks and evaluation metrics to measure its effect on current deep learning architectures. We then proceed to take steps to mitigate the effect of distributional shift on NLP models. To this end, we develop methods based on parametric reformulations of the distributionally robust optimization framework. Empirically, we demonstrate that these approaches yield more robust models as demonstrated on a selection of realistic problems. In the third and final part of this thesis, we explore ways of efficiently adapting existing models to new domains or tasks. Our contribution to this topic takes inspiration from information geometry to derive a new gradient update rule which alleviate catastrophic forgetting issues during adaptation.
Federated learning is a new distributed machine learning framework, where a bunch of heterogeneous clients collaboratively train a model without sharing training data. In this work, we consider a practical and ubiquitous issue in federated learning: intermittent client availability, where the set of eligible clients may change during the training process. Such an intermittent client availability model would significantly deteriorate the performance of the classical Federated Averaging algorithm (FedAvg for short). We propose a simple distributed non-convex optimization algorithm, called Federated Latest Averaging (FedLaAvg for short), which leverages the latest gradients of all clients, even when the clients are not available, to jointly update the global model in each iteration. Our theoretical analysis shows that FedLaAvg attains the convergence rate of $O(1/(N^{1/4} T^{1/2}))$, achieving a sublinear speedup with respect to the total number of clients. We implement and evaluate FedLaAvg with the CIFAR-10 dataset. The evaluation results demonstrate that FedLaAvg indeed reaches a sublinear speedup and achieves 4.23% higher test accuracy than FedAvg.
To address the sparsity and cold start problem of collaborative filtering, researchers usually make use of side information, such as social networks or item attributes, to improve recommendation performance. This paper considers the knowledge graph as the source of side information. To address the limitations of existing embedding-based and path-based methods for knowledge-graph-aware recommendation, we propose Ripple Network, an end-to-end framework that naturally incorporates the knowledge graph into recommender systems. Similar to actual ripples propagating on the surface of water, Ripple Network stimulates the propagation of user preferences over the set of knowledge entities by automatically and iteratively extending a user's potential interests along links in the knowledge graph. The multiple "ripples" activated by a user's historically clicked items are thus superposed to form the preference distribution of the user with respect to a candidate item, which could be used for predicting the final clicking probability. Through extensive experiments on real-world datasets, we demonstrate that Ripple Network achieves substantial gains in a variety of scenarios, including movie, book and news recommendation, over several state-of-the-art baselines.