It has been witnessed that masked image modeling (MIM) has shown a huge potential in self-supervised learning in the past year. Benefiting from the universal backbone vision transformer, MIM learns self-supervised visual representations through masking a part of patches of the image while attempting to recover the missing pixels. Most previous works mask patches of the image randomly, which underutilizes the semantic information that is beneficial to visual representation learning. On the other hand, due to the large size of the backbone, most previous works have to spend much time on pre-training. In this paper, we propose \textbf{Attention-driven Masking and Throwing Strategy} (AMT), which could solve both problems above. We first leverage the self-attention mechanism to obtain the semantic information of the image during the training process automatically without using any supervised methods. Masking strategy can be guided by that information to mask areas selectively, which is helpful for representation learning. Moreover, a redundant patch throwing strategy is proposed, which makes learning more efficient. As a plug-and-play module for masked image modeling, AMT improves the linear probing accuracy of MAE by $2.9\% \sim 5.9\%$ on CIFAR-10/100, STL-10, Tiny ImageNet, and ImageNet-1K, and obtains an improved performance with respect to fine-tuning accuracy of MAE and SimMIM. Moreover, this design also achieves superior performance on downstream detection and segmentation tasks. Code is available at //github.com/guijiejie/AMT.
For medical image segmentation, contrastive learning is the dominant practice to improve the quality of visual representations by contrasting semantically similar and dissimilar pairs of samples. This is enabled by the observation that without accessing ground truth label, negative examples with truly dissimilar anatomical features, if sampled, can significantly improve the performance. In reality, however, these samples may come from similar anatomical features and the models may struggle to distinguish the minority tail-class samples, making the tail classes more prone to misclassification, both of which typically lead to model collapse. In this paper, we propose ARCO, a semi-supervised contrastive learning (CL) framework with stratified group sampling theory in medical image segmentation. In particular, we first propose building ARCO through the concept of variance-reduced estimation, and show that certain variance-reduction techniques are particularly beneficial in medical image segmentation tasks with extremely limited labels. Furthermore, we theoretically prove these sampling techniques are universal in variance reduction. Finally, we experimentally validate our approaches on three benchmark datasets with different label settings, and our methods consistently outperform state-of-the-art semi- and fully-supervised methods. Additionally, we augment the CL frameworks with these sampling techniques and demonstrate significant gains over previous methods. We believe our work is an important step towards semi-supervised medical image segmentation by quantifying the limitation of current self-supervision objectives for accomplishing medical image analysis tasks.
Traditional deep learning algorithms often fail to generalize when they are tested outside of the domain of the training data. The issue can be mitigated by using unlabeled data from the target domain at training time, but because data distributions can change dynamically in real-life applications once a learned model is deployed, it is critical to create networks robust to unknown and unforeseen domain shifts. In this paper we focus on one of the reasons behind the inability of neural networks to be so: deep networks focus only on the most obvious, potentially spurious, clues to make their predictions and are blind to useful but slightly less efficient or more complex patterns. This behaviour has been identified and several methods partially addressed the issue. To investigate their effectiveness and limits, we first design a publicly available MNIST-based benchmark to precisely measure the ability of an algorithm to find the ''hidden'' patterns. Then, we evaluate state-of-the-art algorithms through our benchmark and show that the issue is largely unsolved. Finally, we propose a partially reversed contrastive loss to encourage intra-class diversity and find less strongly correlated patterns, whose efficiency is demonstrated by our experiments.
Understanding the inner workings of neural network models is a crucial step for rationalizing their output and refining their architecture. Transformer-based models are the core of recent natural language processing and have been analyzed typically with attention patterns as their epoch-making feature is contextualizing surrounding input words via attention mechanisms. In this study, we analyze their inner contextualization by considering all the components, including the feed-forward block (i.e., a feed-forward layer and its surrounding residual and normalization layers) as well as the attention. Our experiments with masked language models show that each of the previously overlooked components did modify the degree of the contextualization in case of processing special word-word pairs (e.g., consisting of named entities). Furthermore, we find that some components cancel each other's effects. Our results could update the typical view about each component's roles (e.g., attention performs contextualization, and the other components serve different roles) in the Transformer layer.
Large-scale models trained on broad data have recently become the mainstream architecture in computer vision due to their strong generalization performance. In this paper, the main focus is on an emergent ability in large vision models, known as in-context learning, which allows inference on unseen tasks by conditioning on in-context examples (a.k.a.~prompt) without updating the model parameters. This concept has been well-known in natural language processing but has only been studied very recently for large vision models. We for the first time provide a comprehensive investigation on the impact of in-context examples in computer vision, and find that the performance is highly sensitive to the choice of in-context examples. To overcome the problem, we propose a prompt retrieval framework to automate the selection of in-context examples. Specifically, we present (1) an unsupervised prompt retrieval method based on nearest example search using an off-the-shelf model, and (2) a supervised prompt retrieval method, which trains a neural network to choose examples that directly maximize in-context learning performance. The results demonstrate that our methods can bring non-trivial improvements to visual in-context learning in comparison to the commonly-used random selection.
This paper shows that masked autoencoders (MAE) are scalable self-supervised learners for computer vision. Our MAE approach is simple: we mask random patches of the input image and reconstruct the missing pixels. It is based on two core designs. First, we develop an asymmetric encoder-decoder architecture, with an encoder that operates only on the visible subset of patches (without mask tokens), along with a lightweight decoder that reconstructs the original image from the latent representation and mask tokens. Second, we find that masking a high proportion of the input image, e.g., 75%, yields a nontrivial and meaningful self-supervisory task. Coupling these two designs enables us to train large models efficiently and effectively: we accelerate training (by 3x or more) and improve accuracy. Our scalable approach allows for learning high-capacity models that generalize well: e.g., a vanilla ViT-Huge model achieves the best accuracy (87.8%) among methods that use only ImageNet-1K data. Transfer performance in downstream tasks outperforms supervised pre-training and shows promising scaling behavior.
The recent GPT-3 model (Brown et al., 2020) achieves remarkable few-shot performance solely by leveraging a natural-language prompt and a few task demonstrations as input context. Inspired by their findings, we study few-shot learning in a more practical scenario, where we use smaller language models for which fine-tuning is computationally efficient. We present LM-BFF--better few-shot fine-tuning of language models--a suite of simple and complementary techniques for fine-tuning language models on a small number of annotated examples. Our approach includes (1) prompt-based fine-tuning together with a novel pipeline for automating prompt generation; and (2) a refined strategy for dynamically and selectively incorporating demonstrations into each context. Finally, we present a systematic evaluation for analyzing few-shot performance on a range of NLP tasks, including classification and regression. Our experiments demonstrate that our methods combine to dramatically outperform standard fine-tuning procedures in this low resource setting, achieving up to 30% absolute improvement, and 11% on average across all tasks. Our approach makes minimal assumptions on task resources and domain expertise, and hence constitutes a strong task-agnostic method for few-shot learning.
Most object recognition approaches predominantly focus on learning discriminative visual patterns while overlooking the holistic object structure. Though important, structure modeling usually requires significant manual annotations and therefore is labor-intensive. In this paper, we propose to "look into object" (explicitly yet intrinsically model the object structure) through incorporating self-supervisions into the traditional framework. We show the recognition backbone can be substantially enhanced for more robust representation learning, without any cost of extra annotation and inference speed. Specifically, we first propose an object-extent learning module for localizing the object according to the visual patterns shared among the instances in the same category. We then design a spatial context learning module for modeling the internal structures of the object, through predicting the relative positions within the extent. These two modules can be easily plugged into any backbone networks during training and detached at inference time. Extensive experiments show that our look-into-object approach (LIO) achieves large performance gain on a number of benchmarks, including generic object recognition (ImageNet) and fine-grained object recognition tasks (CUB, Cars, Aircraft). We also show that this learning paradigm is highly generalizable to other tasks such as object detection and segmentation (MS COCO). Project page: //github.com/JDAI-CV/LIO.
We propose to pre-train a unified language model for both autoencoding and partially autoregressive language modeling tasks using a novel training procedure, referred to as a pseudo-masked language model (PMLM). Given an input text with masked tokens, we rely on conventional masks to learn inter-relations between corrupted tokens and context via autoencoding, and pseudo masks to learn intra-relations between masked spans via partially autoregressive modeling. With well-designed position embeddings and self-attention masks, the context encodings are reused to avoid redundant computation. Moreover, conventional masks used for autoencoding provide global masking information, so that all the position embeddings are accessible in partially autoregressive language modeling. In addition, the two tasks pre-train a unified language model as a bidirectional encoder and a sequence-to-sequence decoder, respectively. Our experiments show that the unified language models pre-trained using PMLM achieve new state-of-the-art results on a wide range of natural language understanding and generation tasks across several widely used benchmarks.
We propose a novel attention gate (AG) model for medical imaging that automatically learns to focus on target structures of varying shapes and sizes. Models trained with AGs implicitly learn to suppress irrelevant regions in an input image while highlighting salient features useful for a specific task. This enables us to eliminate the necessity of using explicit external tissue/organ localisation modules of cascaded convolutional neural networks (CNNs). AGs can be easily integrated into standard CNN architectures such as the U-Net model with minimal computational overhead while increasing the model sensitivity and prediction accuracy. The proposed Attention U-Net architecture is evaluated on two large CT abdominal datasets for multi-class image segmentation. Experimental results show that AGs consistently improve the prediction performance of U-Net across different datasets and training sizes while preserving computational efficiency. The code for the proposed architecture is publicly available.
The dominant sequence transduction models are based on complex recurrent or convolutional neural networks in an encoder-decoder configuration. The best performing models also connect the encoder and decoder through an attention mechanism. We propose a new simple network architecture, the Transformer, based solely on attention mechanisms, dispensing with recurrence and convolutions entirely. Experiments on two machine translation tasks show these models to be superior in quality while being more parallelizable and requiring significantly less time to train. Our model achieves 28.4 BLEU on the WMT 2014 English-to-German translation task, improving over the existing best results, including ensembles by over 2 BLEU. On the WMT 2014 English-to-French translation task, our model establishes a new single-model state-of-the-art BLEU score of 41.8 after training for 3.5 days on eight GPUs, a small fraction of the training costs of the best models from the literature. We show that the Transformer generalizes well to other tasks by applying it successfully to English constituency parsing both with large and limited training data.