亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

We present SimXR, a method for controlling a simulated avatar from information (headset pose and cameras) obtained from AR / VR headsets. Due to the challenging viewpoint of head-mounted cameras, the human body is often clipped out of view, making traditional image-based egocentric pose estimation challenging. On the other hand, headset poses provide valuable information about overall body motion, but lack fine-grained details about the hands and feet. To synergize headset poses with cameras, we control a humanoid to track headset movement while analyzing input images to decide body movement. When body parts are seen, the movements of hands and feet will be guided by the images; when unseen, the laws of physics guide the controller to generate plausible motion. We design an end-to-end method that does not rely on any intermediate representations and learns to directly map from images and headset poses to humanoid control signals. To train our method, we also propose a large-scale synthetic dataset created using camera configurations compatible with a commercially available VR headset (Quest 2) and show promising results on real-world captures. To demonstrate the applicability of our framework, we also test it on an AR headset with a forward-facing camera.

相關內容

With the increasing maturity of the text-to-image and image-to-image generative models, AI-generated images (AGIs) have shown great application potential in advertisement, entertainment, education, social media, etc. Although remarkable advancements have been achieved in generative models, very few efforts have been paid to design relevant quality assessment models. In this paper, we propose a novel blind image quality assessment (IQA) network, named AMFF-Net, for AGIs. AMFF-Net evaluates AGI quality from three dimensions, i.e., "visual quality", "authenticity", and "consistency". Specifically, inspired by the characteristics of the human visual system and motivated by the observation that "visual quality" and "authenticity" are characterized by both local and global aspects, AMFF-Net scales the image up and down and takes the scaled images and original-sized image as the inputs to obtain multi-scale features. After that, an Adaptive Feature Fusion (AFF) block is used to adaptively fuse the multi-scale features with learnable weights. In addition, considering the correlation between the image and prompt, AMFF-Net compares the semantic features from text encoder and image encoder to evaluate the text-to-image alignment. We carry out extensive experiments on three AGI quality assessment databases, and the experimental results show that our AMFF-Net obtains better performance than nine state-of-the-art blind IQA methods. The results of ablation experiments further demonstrate the effectiveness of the proposed multi-scale input strategy and AFF block.

Image Quality Assessment (IQA) models benefit significantly from semantic information, which allows them to treat different types of objects distinctly. Currently, leveraging semantic information to enhance IQA is a crucial research direction. Traditional methods, hindered by a lack of sufficiently annotated data, have employed the CLIP image-text pretraining model as their backbone to gain semantic awareness. However, the generalist nature of these pre-trained Vision-Language (VL) models often renders them suboptimal for IQA-specific tasks. Recent approaches have attempted to address this mismatch using prompt technology, but these solutions have shortcomings. Existing prompt-based VL models overly focus on incremental semantic information from text, neglecting the rich insights available from visual data analysis. This imbalance limits their performance improvements in IQA tasks. This paper introduces an innovative multi-modal prompt-based methodology for IQA. Our approach employs carefully crafted prompts that synergistically mine incremental semantic information from both visual and linguistic data. Specifically, in the visual branch, we introduce a multi-layer prompt structure to enhance the VL model's adaptability. In the text branch, we deploy a dual-prompt scheme that steers the model to recognize and differentiate between scene category and distortion type, thereby refining the model's capacity to assess image quality. Our experimental findings underscore the effectiveness of our method over existing Blind Image Quality Assessment (BIQA) approaches. Notably, it demonstrates competitive performance across various datasets. Our method achieves Spearman Rank Correlation Coefficient (SRCC) values of 0.961(surpassing 0.946 in CSIQ) and 0.941 (exceeding 0.930 in KADID), illustrating its robustness and accuracy in diverse contexts.

The rapidly developing Large Vision Language Models (LVLMs) have shown notable capabilities on a range of multi-modal tasks, but still face the hallucination phenomena where the generated texts do not align with the given contexts, significantly restricting the usages of LVLMs. Most previous work detects and mitigates hallucination at the coarse-grained level or requires expensive annotation (e.g., labeling by proprietary models or human experts). To address these issues, we propose detecting and mitigating hallucinations in LVLMs via fine-grained AI feedback. The basic idea is that we generate a small-size sentence-level hallucination annotation dataset by proprietary models, whereby we train a hallucination detection model which can perform sentence-level hallucination detection, covering primary hallucination types (i.e., object, attribute, and relationship). Then, we propose a detect-then-rewrite pipeline to automatically construct preference dataset for training hallucination mitigating model. Furthermore, we propose differentiating the severity of hallucinations, and introducing a Hallucination Severity-Aware Direct Preference Optimization (HSA-DPO) for mitigating hallucination in LVLMs by incorporating the severity of hallucinations into preference learning. Extensive experiments demonstrate the effectiveness of our method.

We present a sublinear time algorithm for computing a near optimal low-rank approximation to any positive semidefinite (PSD) Toeplitz matrix $T\in \mathbb{R}^{d\times d}$, given noisy access to its entries. In particular, given entrywise query access to $T+E$ for an arbitrary noise matrix $E\in \mathbb{R}^{d\times d}$, integer rank $k\leq d$, and error parameter $\delta>0$, our algorithm runs in time $\text{poly}(k,\log(d/\delta))$ and outputs (in factored form) a Toeplitz matrix $\widetilde{T} \in \mathbb{R}^{d \times d}$ with rank $\text{poly}(k,\log(d/\delta))$ satisfying, for some fixed constant $C$, \begin{equation*} \|T-\widetilde{T}\|_F \leq C \cdot \max\{\|E\|_F,\|T-T_k\|_F\} + \delta \cdot \|T\|_F. \end{equation*} Here $\|\cdot \|_F$ is the Frobenius norm and $T_k$ is the best (not necessarily Toeplitz) rank-$k$ approximation to $T$ in the Frobenius norm, given by projecting $T$ onto its top $k$ eigenvectors. Our result has the following applications. When $E = 0$, we obtain the first sublinear time near-relative-error low-rank approximation algorithm for PSD Toeplitz matrices, resolving the main open problem of Kapralov et al. SODA `23, whose algorithm had sublinear query complexity but exponential runtime. Our algorithm can also be applied to approximate the unknown Toeplitz covariance matrix of a multivariate Gaussian distribution, given sample access to this distribution, resolving an open question of Eldar et al. SODA `20. Our algorithm applies sparse Fourier transform techniques to recover a low-rank Toeplitz matrix using its Fourier structure. Our key technical contribution is the first polynomial time algorithm for \emph{discrete time off-grid} sparse Fourier recovery, which may be of independent interest.

Teleportation, a widely-used locomotion technique in Virtual Reality (VR), allows instantaneous movement within VR environments. Enhanced hand tracking in modern VR headsets has popularized hands-only teleportation methods, which eliminate the need for physical controllers. However, these techniques have not fully explored the potential of bi-manual input, where each hand plays a distinct role in teleportation: one controls the teleportation point and the other confirms selections. Additionally, the influence of users' posture, whether sitting or standing, on these techniques remains unexplored. Furthermore, previous teleportation evaluations lacked assessments based on established human motor models such as Fitts' Law. To address these gaps, we conducted a user study (N=20) to evaluate bi-manual pointing performance in VR teleportation tasks, considering both sitting and standing postures. We proposed a variation of the Fitts' Law model to accurately assess users' teleportation performance. We designed and evaluated various bi-manual teleportation techniques, comparing them to uni-manual and dwell-based techniques. Results showed that bi-manual techniques, particularly when the dominant hand is used for pointing and the non-dominant hand for selection, enable faster teleportation compared to other methods. Furthermore, bi-manual and dwell techniques proved significantly more accurate than uni-manual teleportation. Moreover, our proposed Fitts' Law variation more accurately predicted users' teleportation performance compared to existing models. Finally, we developed a set of guidelines for designers to enhance VR teleportation experiences and optimize user interactions.

Classifier-Free Guidance (CFG) enhances the quality and condition adherence of text-to-image diffusion models. It operates by combining the conditional and unconditional predictions using a fixed weight. However, recent works vary the weights throughout the diffusion process, reporting superior results but without providing any rationale or analysis. By conducting comprehensive experiments, this paper provides insights into CFG weight schedulers. Our findings suggest that simple, monotonically increasing weight schedulers consistently lead to improved performances, requiring merely a single line of code. In addition, more complex parametrized schedulers can be optimized for further improvement, but do not generalize across different models and tasks.

Graph Neural Networks (GNNs) offer a compact and computationally efficient way to learn embeddings and classifications on graph data. GNN models are frequently large, making distributed minibatch training necessary. The primary contribution of this paper is new methods for reducing communication in the sampling step for distributed GNN training. Here, we propose a matrix-based bulk sampling approach that expresses sampling as a sparse matrix multiplication (SpGEMM) and samples multiple minibatches at once. When the input graph topology does not fit on a single device, our method distributes the graph and use communication-avoiding SpGEMM algorithms to scale GNN minibatch sampling, enabling GNN training on much larger graphs than those that can fit into a single device memory. When the input graph topology (but not the embeddings) fits in the memory of one GPU, our approach (1) performs sampling without communication, (2) amortizes the overheads of sampling a minibatch, and (3) can represent multiple sampling algorithms by simply using different matrix constructions. In addition to new methods for sampling, we introduce a pipeline that uses our matrix-based bulk sampling approach to provide end-to-end training results. We provide experimental results on the largest Open Graph Benchmark (OGB) datasets on $128$ GPUs, and show that our pipeline is $2.5\times$ faster than Quiver (a distributed extension to PyTorch-Geometric) on a $3$-layer GraphSAGE network. On datasets outside of OGB, we show a $8.46\times$ speedup on $128$ GPUs in per-epoch time. Finally, we show scaling when the graph is distributed across GPUs and scaling for both node-wise and layer-wise sampling algorithms.

Recent artificial intelligence (AI) systems have reached milestones in "grand challenges" ranging from Go to protein-folding. The capability to retrieve medical knowledge, reason over it, and answer medical questions comparably to physicians has long been viewed as one such grand challenge. Large language models (LLMs) have catalyzed significant progress in medical question answering; Med-PaLM was the first model to exceed a "passing" score in US Medical Licensing Examination (USMLE) style questions with a score of 67.2% on the MedQA dataset. However, this and other prior work suggested significant room for improvement, especially when models' answers were compared to clinicians' answers. Here we present Med-PaLM 2, which bridges these gaps by leveraging a combination of base LLM improvements (PaLM 2), medical domain finetuning, and prompting strategies including a novel ensemble refinement approach. Med-PaLM 2 scored up to 86.5% on the MedQA dataset, improving upon Med-PaLM by over 19% and setting a new state-of-the-art. We also observed performance approaching or exceeding state-of-the-art across MedMCQA, PubMedQA, and MMLU clinical topics datasets. We performed detailed human evaluations on long-form questions along multiple axes relevant to clinical applications. In pairwise comparative ranking of 1066 consumer medical questions, physicians preferred Med-PaLM 2 answers to those produced by physicians on eight of nine axes pertaining to clinical utility (p < 0.001). We also observed significant improvements compared to Med-PaLM on every evaluation axis (p < 0.001) on newly introduced datasets of 240 long-form "adversarial" questions to probe LLM limitations. While further studies are necessary to validate the efficacy of these models in real-world settings, these results highlight rapid progress towards physician-level performance in medical question answering.

Few-shot Knowledge Graph (KG) completion is a focus of current research, where each task aims at querying unseen facts of a relation given its few-shot reference entity pairs. Recent attempts solve this problem by learning static representations of entities and references, ignoring their dynamic properties, i.e., entities may exhibit diverse roles within task relations, and references may make different contributions to queries. This work proposes an adaptive attentional network for few-shot KG completion by learning adaptive entity and reference representations. Specifically, entities are modeled by an adaptive neighbor encoder to discern their task-oriented roles, while references are modeled by an adaptive query-aware aggregator to differentiate their contributions. Through the attention mechanism, both entities and references can capture their fine-grained semantic meanings, and thus render more expressive representations. This will be more predictive for knowledge acquisition in the few-shot scenario. Evaluation in link prediction on two public datasets shows that our approach achieves new state-of-the-art results with different few-shot sizes.

Manually labeling objects by tracing their boundaries is a laborious process. In Polygon-RNN++ the authors proposed Polygon-RNN that produces polygonal annotations in a recurrent manner using a CNN-RNN architecture, allowing interactive correction via humans-in-the-loop. We propose a new framework that alleviates the sequential nature of Polygon-RNN, by predicting all vertices simultaneously using a Graph Convolutional Network (GCN). Our model is trained end-to-end. It supports object annotation by either polygons or splines, facilitating labeling efficiency for both line-based and curved objects. We show that Curve-GCN outperforms all existing approaches in automatic mode, including the powerful PSP-DeepLab and is significantly more efficient in interactive mode than Polygon-RNN++. Our model runs at 29.3ms in automatic, and 2.6ms in interactive mode, making it 10x and 100x faster than Polygon-RNN++.

北京阿比特科技有限公司