亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Evolutionary algorithms face significant challenges when dealing with dynamic multi-objective optimization because Pareto optimal solutions and/or Pareto optimal fronts change. This paper proposes a unified paradigm, which combines the kernelized autoncoding evolutionary search and the centriod-based prediction (denoted by KAEP), for solving dynamic multi-objective optimization problems (DMOPs). Specifically, whenever a change is detected, KAEP reacts effectively to it by generating two subpopulations. The first subpoulation is generated by a simple centriod-based prediction strategy. For the second initial subpopulation, the kernel autoencoder is derived to predict the moving of the Pareto-optimal solutions based on the historical elite solutions. In this way, an initial population is predicted by the proposed combination strategies with good convergence and diversity, which can be effective for solving DMOPs. The performance of our proposed method is compared with five state-of-the-art algorithms on a number of complex benchmark problems. Empirical results fully demonstrate the superiority of our proposed method on most test instances.

相關內容

Tissue segmentation is a routine preprocessing step to reduce the computational cost of whole slide image (WSI) analysis by excluding background regions. Traditional image processing techniques are commonly used for tissue segmentation, but often require manual adjustments to parameter values for atypical cases, fail to exclude all slide and scanning artifacts from the background, and are unable to segment adipose tissue. Pen marking artifacts in particular can be a potential source of bias for subsequent analyses if not removed. In addition, several applications require the separation of individual cross-sections, which can be challenging due to tissue fragmentation and adjacent positioning. To address these problems, we develop a convolutional neural network for tissue and pen marking segmentation using a dataset of 200 H&E stained WSIs. For separating tissue cross-sections, we propose a novel post-processing method based on clustering predicted centroid locations of the cross-sections in a 2D histogram. On an independent test set, the model achieved a mean Dice score of 0.981$\pm$0.033 for tissue segmentation and a mean Dice score of 0.912$\pm$0.090 for pen marking segmentation. The mean absolute difference between the number of annotated and separated cross-sections was 0.075$\pm$0.350. Our results demonstrate that the proposed model can accurately segment H&E stained tissue cross-sections and pen markings in WSIs while being robust to many common slide and scanning artifacts. The model with trained model parameters and post-processing method are made publicly available as a Python package called SlideSegmenter.

We propose policy gradient algorithms for robust infinite-horizon Markov decision processes (MDPs) with non-rectangular uncertainty sets, thereby addressing an open challenge in the robust MDP literature. Indeed, uncertainty sets that display statistical optimality properties and make optimal use of limited data often fail to be rectangular. Unfortunately, the corresponding robust MDPs cannot be solved with dynamic programming techniques and are in fact provably intractable. We first present a randomized projected Langevin dynamics algorithm that solves the robust policy evaluation problem to global optimality but is inefficient. We also propose a deterministic policy gradient method that is efficient but solves the robust policy evaluation problem only approximately, and we prove that the approximation error scales with a new measure of non-rectangularity of the uncertainty set. Finally, we describe an actor-critic algorithm that finds an $\epsilon$-optimal solution for the robust policy improvement problem in $\mathcal{O}(1/\epsilon^4)$ iterations. We thus present the first complete solution scheme for robust MDPs with non-rectangular uncertainty sets offering global optimality guarantees. Numerical experiments show that our algorithms compare favorably against state-of-the-art methods.

Annotating automatic target recognition (ATR) is a highly challenging task, primarily due to the unavailability of labeled data in the target domain. Hence, it is essential to construct an optimal target domain classifier by utilizing the labeled information of the source domain images. The transductive transfer learning (TTL) method that incorporates a CycleGAN-based unpaired domain translation network has been previously proposed in the literature for effective ATR annotation. Although this method demonstrates great potential for ATR, it severely suffers from lower annotation performance, higher Fr\'echet Inception Distance (FID) score, and the presence of visual artifacts in the synthetic images. To address these issues, we propose a hybrid contrastive learning base unpaired domain translation (H-CUT) network that achieves a significantly lower FID score. It incorporates both attention and entropy to emphasize the domain-specific region, a noisy feature mixup module to generate high variational synthetic negative patches, and a modulated noise contrastive estimation (MoNCE) loss to reweight all negative patches using optimal transport for better performance. Our proposed contrastive learning and cycle-consistency-based TTL (C3TTL) framework consists of two H-CUT networks and two classifiers. It simultaneously optimizes cycle-consistency, MoNCE, and identity losses. In C3TTL, two H-CUT networks have been employed through a bijection mapping to feed the reconstructed source domain images into a pretrained classifier to guide the optimal target domain classifier. Extensive experimental analysis conducted on three ATR datasets demonstrates that the proposed C3TTL method is effective in annotating civilian and military vehicles, as well as ship targets.

Optimal control (OC) algorithms such as Differential Dynamic Programming (DDP) take advantage of the derivatives of the dynamics to efficiently control physical systems. Yet, in the presence of nonsmooth dynamical systems, such class of algorithms are likely to fail due, for instance, to the presence of discontinuities in the dynamics derivatives or because of non-informative gradient. On the contrary, reinforcement learning (RL) algorithms have shown better empirical results in scenarios exhibiting non-smooth effects (contacts, frictions, etc). Our approach leverages recent works on randomized smoothing (RS) to tackle non-smoothness issues commonly encountered in optimal control, and provides key insights on the interplay between RL and OC through the prism of RS methods. This naturally leads us to introduce the randomized Differential Dynamic Programming (R-DDP) algorithm accounting for deterministic but non-smooth dynamics in a very sample-efficient way. The experiments demonstrate that our method is able to solve classic robotic problems with dry friction and frictional contacts, where classical OC algorithms are likely to fail and RL algorithms require in practice a prohibitive number of samples to find an optimal solution.

While both the database and high-performance computing (HPC) communities utilize lossless compression methods to minimize floating-point data size, a disconnect persists between them. Each community designs and assesses methods in a domain-specific manner, making it unclear if HPC compression techniques can benefit database applications or vice versa. With the HPC community increasingly leaning towards in-situ analysis and visualization, more floating-point data from scientific simulations are being stored in databases like Key-Value Stores and queried using in-memory retrieval paradigms. This trend underscores the urgent need for a collective study of these compression methods' strengths and limitations, not only based on their performance in compressing data from various domains but also on their runtime characteristics. Our study extensively evaluates the performance of eight CPU-based and five GPU-based compression methods developed by both communities, using 33 real-world datasets assembled in the Floating-point Compressor Benchmark (FCBench). Additionally, we utilize the roofline model to profile their runtime bottlenecks. Our goal is to offer insights into these compression methods that could assist researchers in selecting existing methods or developing new ones for integrated database and HPC applications.

We propose Constraint-Generation Policy Optimization (CGPO) for optimizing policy parameters within compact and interpretable policy classes for mixed discrete-continuous Markov Decision Processes (DC-MDPs). CGPO is not only able to provide bounded policy error guarantees over an infinite range of initial states for many DC-MDPs with expressive nonlinear dynamics, but it can also provably derive optimal policies in cases where it terminates with zero error. Furthermore, CGPO can generate worst-case state trajectories to diagnose policy deficiencies and provide counterfactual explanations of optimal actions. To achieve such results, CGPO proposes a bi-level mixed-integer nonlinear optimization framework for optimizing policies within defined expressivity classes (i.e. piecewise (non)-linear) and reduces it to an optimal constraint generation methodology that adversarially generates worst-case state trajectories. Furthermore, leveraging modern nonlinear optimizers, CGPO can obtain solutions with bounded optimality gap guarantees. We handle stochastic transitions through explicit marginalization (where applicable) or chance-constraints, providing high-probability policy performance guarantees. We also present a road-map for understanding the computational complexities associated with different expressivity classes of policy, reward, and transition dynamics. We experimentally demonstrate the applicability of CGPO in diverse domains, including inventory control, management of a system of water reservoirs, and physics control. In summary, we provide a solution for deriving structured, compact, and explainable policies with bounded performance guarantees, enabling worst-case scenario generation and counterfactual policy diagnostics.

We propose the algorithm that solves the symmetric cone programs (SCPs) by iteratively calling the projection and rescaling methods the algorithms for solving exceptional cases of SCP. Although our algorithm can solve SCPs by itself, we propose it intending to use it as a post-processing step for interior point methods since it can solve the problems more efficiently by using an approximate optimal (interior feasible) solution. We also conduct numerical experiments to see the numerical performance of the proposed algorithm when used as a post-processing step of the solvers implementing interior point methods, using several instances where the symmetric cone is given by a direct product of positive semidefinite cones. Numerical results show that our algorithm can obtain approximate optimal solutions more accurately than the solvers. When at least one of the primal and dual problems did not have an interior feasible solution, the performance of our algorithm was slightly reduced in terms of optimality. However, our algorithm stably returned more accurate solutions than the solvers when the primal and dual problems had interior feasible solutions.

Most object recognition approaches predominantly focus on learning discriminative visual patterns while overlooking the holistic object structure. Though important, structure modeling usually requires significant manual annotations and therefore is labor-intensive. In this paper, we propose to "look into object" (explicitly yet intrinsically model the object structure) through incorporating self-supervisions into the traditional framework. We show the recognition backbone can be substantially enhanced for more robust representation learning, without any cost of extra annotation and inference speed. Specifically, we first propose an object-extent learning module for localizing the object according to the visual patterns shared among the instances in the same category. We then design a spatial context learning module for modeling the internal structures of the object, through predicting the relative positions within the extent. These two modules can be easily plugged into any backbone networks during training and detached at inference time. Extensive experiments show that our look-into-object approach (LIO) achieves large performance gain on a number of benchmarks, including generic object recognition (ImageNet) and fine-grained object recognition tasks (CUB, Cars, Aircraft). We also show that this learning paradigm is highly generalizable to other tasks such as object detection and segmentation (MS COCO). Project page: //github.com/JDAI-CV/LIO.

Knowledge graph completion aims to predict missing relations between entities in a knowledge graph. While many different methods have been proposed, there is a lack of a unifying framework that would lead to state-of-the-art results. Here we develop PathCon, a knowledge graph completion method that harnesses four novel insights to outperform existing methods. PathCon predicts relations between a pair of entities by: (1) Considering the Relational Context of each entity by capturing the relation types adjacent to the entity and modeled through a novel edge-based message passing scheme; (2) Considering the Relational Paths capturing all paths between the two entities; And, (3) adaptively integrating the Relational Context and Relational Path through a learnable attention mechanism. Importantly, (4) in contrast to conventional node-based representations, PathCon represents context and path only using the relation types, which makes it applicable in an inductive setting. Experimental results on knowledge graph benchmarks as well as our newly proposed dataset show that PathCon outperforms state-of-the-art knowledge graph completion methods by a large margin. Finally, PathCon is able to provide interpretable explanations by identifying relations that provide the context and paths that are important for a given predicted relation.

Retrieving object instances among cluttered scenes efficiently requires compact yet comprehensive regional image representations. Intuitively, object semantics can help build the index that focuses on the most relevant regions. However, due to the lack of bounding-box datasets for objects of interest among retrieval benchmarks, most recent work on regional representations has focused on either uniform or class-agnostic region selection. In this paper, we first fill the void by providing a new dataset of landmark bounding boxes, based on the Google Landmarks dataset, that includes $94k$ images with manually curated boxes from $15k$ unique landmarks. Then, we demonstrate how a trained landmark detector, using our new dataset, can be leveraged to index image regions and improve retrieval accuracy while being much more efficient than existing regional methods. In addition, we further introduce a novel regional aggregated selective match kernel (R-ASMK) to effectively combine information from detected regions into an improved holistic image representation. R-ASMK boosts image retrieval accuracy substantially at no additional memory cost, while even outperforming systems that index image regions independently. Our complete image retrieval system improves upon the previous state-of-the-art by significant margins on the Revisited Oxford and Paris datasets. Code and data will be released.

北京阿比特科技有限公司