Phase-field models of fracture introduce smeared cracks of width commensurate with a regularisation length parameter $\epsilon$ and obeying a minimum energy principle. Mesh adaptivity naturally suggests itself as a means of supplying spatial resolution were needed while simultaneously keeping the computational size of the model as small as possible. Here, a variational-based spatial adaptivity is proposed for a phase-field model of fracture. The conventional phase-field model is generalised by allowing a spatial variation of the regularisation length $\epsilon$ in the energy functional. The optimal spatial variation of the regularisation length then follows by energy minimisation in the same manner as the displacement and phase fields. The extended phase-field model is utilised as a basis for an adaptive mesh refinement strategy, whereby the mesh size is required to resolve the optimal length parameter locally. The resulting solution procedure is implemented in the framework of the finite element library FEniCS. Selected numerical tests suggest that the spatially adaptive phase-field model exhibits the same convergence rate as the conventional phase-field model, albeit with a vastly superior constant, which results in considerable computational savings.
Quantum state tomography (QST) for reconstructing pure states requires exponentially increasing resources and measurements with the number of qubits by using state-of-the-art quantum compressive sensing (CS) methods. In this article, QST reconstruction for any pure state composed of the superposition of $K$ different computational basis states of $n$ qubits in a specific measurement set-up, i.e., denoted as $K$-sparse, is achieved without any initial knowledge and with quantum polynomial-time complexity of resources based on the assumption of the existence of polynomial size quantum circuits for implementing exponentially large powers of a specially designed unitary operator. The algorithm includes $\mathcal{O}(2 \, / \, \vert c_{k}\vert^2)$ repetitions of conventional phase estimation algorithm depending on the probability $\vert c_{k}\vert^2$ of the least possible basis state in the superposition and $\mathcal{O}(d \, K \,(log K)^c)$ measurement settings with conventional quantum CS algorithms independent from the number of qubits while dependent on $K$ for constant $c$ and $d$. Quantum phase estimation algorithm is exploited based on the favorable eigenstructure of the designed operator to represent any pure state as a superposition of eigenvectors. Linear optical set-up is presented for realizing the special unitary operator which includes beam splitters and phase shifters where propagation paths of single photon are tracked with which-path-detectors. Quantum circuit implementation is provided by using only CNOT, phase shifter and $- \pi \, / \, 2$ rotation gates around X-axis in Bloch sphere, i.e., $R_{X}(- \pi \, / \, 2)$, allowing to be realized in NISQ devices. Open problems are discussed regarding the existence of the unitary operator and its practical circuit implementation.
We introduce a new regularization model for incompressible fluid flow, which is a regularization of the EMAC formulation of the Navier-Stokes equations (NSE) that we call EMAC-Reg. The EMAC (energy, momentum, and angular momentum conserving) formulation has proved to be a useful formulation because it conserves energy, momentum and angular momentum even when the divergence constraint is only weakly enforced. However it is still a NSE formulation and so cannot resolve higher Reynolds number flows without very fine meshes. By carefully introducing regularization into the EMAC formulation, we create a model more suitable for coarser mesh computations but that still conserves the same quantities as EMAC, i.e., energy, momentum, and angular momentum. We show that EMAC-Reg, when semi-discretized with a finite element spatial discretization is well-posed and optimally accurate. Numerical results are provided that show EMAC-Reg is a robust coarse mesh model.
This paper presents a framework for modeling failure in quasi-brittle geomaterials under different loading conditions. A micromechanics-based model is proposed in which the field variables are linked to physical mechanisms at the microcrack level: damage is related to the growth of microcracks, while plasticity is related to the frictional sliding of closed microcracks. Consequently, the hardening/softening functions and parameters entering the free energy follow from the definition of a single degradation function and the elastic material properties. The evolution of opening microcracks in tension leads to brittle behavior and mode I fracture, while the evolution of closed microcracks under frictional sliding in compression/shear leads to ductile behavior and mode II fracture. Frictional sliding is endowed with a non-associative law, a crucial aspect of the model that considers the effect of dilation and allows for realistic material responses with non-vanishing frictional energy dissipation. Despite the non-associative law, a variationally consistent formulation is presented using notions of energy balance and stability, following the energetic formulation for rate-independent systems. The material response of the model is first described, followed by the numerical implementation procedure and several benchmark finite element simulations. The results highlight the ability of the model to describe tensile, shear, and mixed-mode fracture, as well as responses with brittle-to-ductile transition. A key result is that, by virtue of the micromechanical arguments, realistic failure modes can be captured, without resorting to the usual heuristic modifications considered in the phase-field literature. The numerical results are thoroughly discussed with reference to previous numerical studies, experimental evidence, and analytical fracture criteria.
Most of the lattice Boltzmann methods simulate an approximation of the sharp interface problem of dissolution and precipitation. In such studies the curvature-driven motion of interface is neglected in the Gibbs-Thomson condition. In order to simulate those phenomena with or without curvature-driven motion, we propose a phase-field model which is derived from a thermodynamic functional of grand-potential. Compared to the well-known free energy, the main advantage of the grand-potential is to provide a theoretical framework which is consistent with the equilibrium properties such as the equality of chemical potentials. The model is composed of one equation for the phase-field {\phi} coupled with one equation for the chemical potential {\mu}. In the phase-field method, the curvature-driven motion is always contained in the phase-field equation. For canceling it, a counter term must be added in the {\phi}-equation. For reason of mass conservation, the {\mu}-equation is written with a mixed formulation which involves the composition c and the chemical potential. The closure relationship between c and {\mu} is derived by assuming quadratic free energies of bulk phases. The anti-trapping current is also considered in the composition equation for simulations with null diffusion in solid. The lattice Boltzmann schemes are implemented in LBM_saclay, a numerical code running on various High Performance Computing architectures. Validations are carried out with several analytical solutions representative of dissolution and precipitation. Simulations with or without counter term are compared on the shape of porous medium characterized by microtomography. The computations have run on a single GPU-V100.
A key advantage of isogeometric discretizations is their accurate and well-behaved eigenfrequencies and eigenmodes. For degree two and higher, however, optical branches of spurious outlier frequencies and modes may appear due to boundaries or reduced continuity at patch interfaces. In this paper, we introduce a variational approach based on perturbed eigenvalue analysis that eliminates outlier frequencies without negatively affecting the accuracy in the remainder of the spectrum and modes. We then propose a pragmatic iterative procedure that estimates the perturbation parameters in such a way that the outlier frequencies are effectively reduced. We demonstrate that our approach allows for a much larger critical time-step size in explicit dynamics calculations. In addition, we show that the critical time-step size obtained with the proposed approach does not depend on the polynomial degree of spline basis functions.
Generating plausible hair image given limited guidance, such as sparse sketches or low-resolution image, has been made possible with the rise of Generative Adversarial Networks (GANs). Traditional image-to-image translation networks can generate recognizable results, but finer textures are usually lost and blur artifacts commonly exist. In this paper, we propose a two-phase generative model for high-quality hair image synthesis. The two-phase pipeline first generates a coarse image by an existing image translation model, then applies a re-generating network with self-enhancing capability to the coarse image. The self-enhancing capability is achieved by a proposed structure extraction layer, which extracts the texture and orientation map from a hair image. Extensive experiments on two tasks, Sketch2Hair and Hair Super-Resolution, demonstrate that our approach is able to synthesize plausible hair image with finer details, and outperforms the state-of-the-art.
Machine learning methods are powerful in distinguishing different phases of matter in an automated way and provide a new perspective on the study of physical phenomena. We train a Restricted Boltzmann Machine (RBM) on data constructed with spin configurations sampled from the Ising Hamiltonian at different values of temperature and external magnetic field using Monte Carlo methods. From the trained machine we obtain the flow of iterative reconstruction of spin state configurations to faithfully reproduce the observables of the physical system. We find that the flow of the trained RBM approaches the spin configurations of the maximal possible specific heat which resemble the near criticality region of the Ising model. In the special case of the vanishing magnetic field the trained RBM converges to the critical point of the Renormalization Group (RG) flow of the lattice model. Our results suggest an alternative explanation of how the machine identifies the physical phase transitions, by recognizing certain properties of the configuration like the maximization of the specific heat, instead of associating directly the recognition procedure with the RG flow and its fixed points. Then from the reconstructed data we deduce the critical exponent associated to the magnetization to find satisfactory agreement with the actual physical value. We assume no prior knowledge about the criticality of the system and its Hamiltonian.
In two-phase image segmentation, convex relaxation has allowed global minimisers to be computed for a variety of data fitting terms. Many efficient approaches exist to compute a solution quickly. However, we consider whether the nature of the data fitting in this formulation allows for reasonable assumptions to be made about the solution that can improve the computational performance further. In particular, we employ a well known dual formulation of this problem and solve the corresponding equations in a restricted domain. We present experimental results that explore the dependence of the solution on this restriction and quantify imrovements in the computational performance. This approach can be extended to analogous methods simply and could provide an efficient alternative for problems of this type.
The piecewise constant Mumford-Shah (PCMS) model and the Rudin-Osher-Fatemi (ROF) model are two of the most famous variational models in image segmentation and image restoration, respectively. They have ubiquitous applications in image processing. In this paper, we explore the linkage between these two important models. We prove that for two-phase segmentation problem the optimal solution of the PCMS model can be obtained by thresholding the minimizer of the ROF model. This linkage is still valid for multiphase segmentation under mild assumptions. Thus it opens a new segmentation paradigm: image segmentation can be done via image restoration plus thresholding. This new paradigm, which circumvents the innate non-convex property of the PCMS model, therefore improves the segmentation performance in both efficiency (much faster than state-of-the-art methods based on PCMS model, particularly when the phase number is high) and effectiveness (producing segmentation results with better quality) due to the flexibility of the ROF model in tackling degraded images, such as noisy images, blurry images or images with information loss. As a by-product of the new paradigm, we derive a novel segmentation method, coined thresholded-ROF (T-ROF) method, to illustrate the virtue of manipulating image segmentation through image restoration techniques. The convergence of the T-ROF method under certain conditions is proved, and elaborate experimental results and comparisons are presented.
In this paper, we study the optimal convergence rate for distributed convex optimization problems in networks. We model the communication restrictions imposed by the network as a set of affine constraints and provide optimal complexity bounds for four different setups, namely: the function $F(\xb) \triangleq \sum_{i=1}^{m}f_i(\xb)$ is strongly convex and smooth, either strongly convex or smooth or just convex. Our results show that Nesterov's accelerated gradient descent on the dual problem can be executed in a distributed manner and obtains the same optimal rates as in the centralized version of the problem (up to constant or logarithmic factors) with an additional cost related to the spectral gap of the interaction matrix. Finally, we discuss some extensions to the proposed setup such as proximal friendly functions, time-varying graphs, improvement of the condition numbers.