Bayesian additive regression trees (BART) is a non-parametric method to approximate functions. It is a black-box method based on the sum of many trees where priors are used to regularize inference, mainly by restricting trees' learning capacity so that no individual tree is able to explain the data, but rather the sum of trees. We discuss BART in the context of probabilistic programming languages (PPL), i.e., we present BART as a primitive that can be used as a component of a probabilistic model rather than as a standalone model. Specifically, we introduce the Python library PyMC-BART, which works by extending PyMC, a library for probabilistic programming. We showcase a few examples of models that can be built using PyMC-BART, discuss recommendations for the selection of hyperparameters, and finally, we close with limitations of our implementation and future directions for improvement.
One central theme in machine learning is function estimation from sparse and noisy data. An example is supervised learning where the elements of the training set are couples, each containing an input location and an output response. In the last decades, a substantial amount of work has been devoted to design estimators for the unknown function and to study their convergence to the optimal predictor, also characterizing the learning rate. These results typically rely on stationary assumptions where input locations are drawn from a probability distribution that does not change in time. In this work, we consider kernel-based ridge regression and derive convergence conditions under non stationary distributions, addressing also cases where stochastic adaption may happen infinitely often. This includes the important exploration-exploitation problems where e.g. a set of agents/robots has to monitor an environment to reconstruct a sensorial field and their movements rules are continuously updated on the basis of the acquired knowledge on the field and/or the surrounding environment.
Decision trees offer the benefit of easy interpretation because they allow the classification of input data based on if--then rules. However, as decision trees are constructed by an algorithm that achieves clear classification with minimum necessary rules, the trees possess the drawback of extracting only minimum rules, even when various latent rules exist in data. Approaches that construct multiple trees using randomly selected feature subsets do exist. However, the number of trees that can be constructed remains at the same scale because the number of feature subsets is a combinatorial explosion. Additionally, when multiple trees are constructed, numerous rules are generated, of which several are untrustworthy and/or highly similar. Therefore, we propose "MAABO-MT" and "GS-MRM" algorithms that strategically construct trees with high estimation performance among all possible trees with small computational complexity and extract only reliable and non-similar rules, respectively. Experiments are conducted using several open datasets to analyze the effectiveness of the proposed method. The results confirm that MAABO-MT can discover reliable rules at a lower computational cost than other methods that rely on randomness. Furthermore, the proposed method is confirmed to provide deeper insights than single decision trees commonly used in previous studies. Therefore, MAABO-MT and GS-MRM can efficiently extract rules from combinatorially exploded decision trees.
Existing ML-based atmospheric models are not suitable for climate prediction, which requires long-term stability and physical consistency. We present ACE (AI2 Climate Emulator), a 200M-parameter, autoregressive machine learning emulator of an existing comprehensive 100-km resolution global atmospheric model. The formulation of ACE allows evaluation of physical laws such as the conservation of mass and moisture. The emulator is stable for 10 years, nearly conserves column moisture without explicit constraints and faithfully reproduces the reference model's climate, outperforming a challenging baseline on over 80% of tracked variables. ACE requires nearly 100x less wall clock time and is 100x more energy efficient than the reference model using typically available resources.
Fitted finite element methods are constructed for a singularly perturbed convection-diffusion problem in two space dimensions. Exponential splines as basis functions are combined with Shishkin meshes to obtain a stable parameter-uniform numerical method. These schemes satisfy a discrete maximum principle. In the classical case, the numerical approximations converge, in the maximum pointwise norm, at a rate of second order and the approximations converge at a rate of first order for all values of the singular perturbation parameter.
We propose a new method to compare survival data based on Higher Criticism (HC) of P-values obtained from many exact hypergeometric tests. The method can accommodate censorship and is sensitive to moderate differences in some unknown and relatively few time intervals, attaining much better power against such differences than the log-rank test and other tests that are popular under non-proportional hazard alternatives. We demonstrate the usefulness of the HC-based test in detecting rare differences compared to existing tests using simulated data and using actual gene expression data. Additionally, we analyze the asymptotic power of our method under a piece-wise homogeneous exponential decay model with rare and weak departures, describing two groups experiencing failure rates that are usually identical over time except in a few unknown instances in which the second group's failure rate is higher. Under an asymptotic calibration of the model's parameters, the HC-based test's power experiences a phase transition across the plane involving the rarity and intensity parameters that mirrors the phase transition in a two-sample rare and weak normal means setting. In particular, the phase transition curve of our test indicates a larger region in which it is fully powered than the corresponding region of the log-rank test. %The latter attains a phase transition curve that is analogous to a test based on Fisher's combination statistic of the hypergeometric P-values. %To our knowledge, this is the first analysis of a rare and weak signal detection model that involves individually dependent effects in a non-Gaussian setting.
The alpha complex is a fundamental data structure from computational geometry, which encodes the topological type of a union of balls $B(x; r) \subset \mathbb{R}^m$ for $x\in S$, including a weighted version that allows for varying radii. It consists of the collection of "simplices" $\sigma = \{x_0, ..., x_k \} \subset S$, which correspond to nomempty $(k + 1)$-fold intersections of cells in a radius-restricted version of the Voronoi diagram. Existing algorithms for computing the alpha complex require that the points reside in low dimension because they begin by computing the entire Delaunay complex, which rapidly becomes intractable, even when the alpha complex is of a reasonable size. This paper presents a method for computing the alpha complex without computing the full Delaunay triangulation by applying Lagrangian duality, specifically an algorithm based on dual quadratic programming that seeks to rule simplices out rather than ruling them in.
We propose a method to construct a joint statistical model for mixed-domain data to analyze their dependence. Multivariate Gaussian and log-linear models are particular examples of the proposed model. It is shown that the functional equation defining the model has a unique solution under fairly weak conditions. The model is characterized by two orthogonal parameters: the dependence parameter and the marginal parameter. To estimate the dependence parameter, a conditional inference together with a sampling procedure is proposed and is shown to provide a consistent estimator. Illustrative examples of data analyses involving penguins and earthquakes are presented.
We introduce a flexible method to simultaneously infer both the drift and volatility functions of a discretely observed scalar diffusion. We introduce spline bases to represent these functions and develop a Markov chain Monte Carlo algorithm to infer, a posteriori, the coefficients of these functions in the spline basis. A key innovation is that we use spline bases to model transformed versions of the drift and volatility functions rather than the functions themselves. The output of the algorithm is a posterior sample of plausible drift and volatility functions that are not constrained to any particular parametric family. The flexibility of this approach provides practitioners a powerful investigative tool, allowing them to posit a variety of parametric models to better capture the underlying dynamics of their processes of interest. We illustrate the versatility of our method by applying it to challenging datasets from finance, paleoclimatology, and astrophysics. In view of the parametric diffusion models widely employed in the literature for those examples, some of our results are surprising since they call into question some aspects of these models.
An arc-search interior-point method is a type of interior-point methods that approximates the central path by an ellipsoidal arc, and it can often reduce the number of iterations. In this work, to further reduce the number of iterations and computation time for solving linear programming problems, we propose two arc-search interior-point methods using Nesterov's restarting strategy that is well-known method to accelerate the gradient method with a momentum term. The first one generates a sequence of iterations in the neighborhood, and we prove that the convergence of the generated sequence to an optimal solution and the computation complexity is polynomial time. The second one incorporates the concept of the Mehrotra-type interior-point method to improve numerical performance. The numerical experiments demonstrate that the second one reduced the number of iterations and computational time. In particular, the average number of iterations was reduced compared to existing interior-point methods due to the momentum term.
The remarkable practical success of deep learning has revealed some major surprises from a theoretical perspective. In particular, simple gradient methods easily find near-optimal solutions to non-convex optimization problems, and despite giving a near-perfect fit to training data without any explicit effort to control model complexity, these methods exhibit excellent predictive accuracy. We conjecture that specific principles underlie these phenomena: that overparametrization allows gradient methods to find interpolating solutions, that these methods implicitly impose regularization, and that overparametrization leads to benign overfitting. We survey recent theoretical progress that provides examples illustrating these principles in simpler settings. We first review classical uniform convergence results and why they fall short of explaining aspects of the behavior of deep learning methods. We give examples of implicit regularization in simple settings, where gradient methods lead to minimal norm functions that perfectly fit the training data. Then we review prediction methods that exhibit benign overfitting, focusing on regression problems with quadratic loss. For these methods, we can decompose the prediction rule into a simple component that is useful for prediction and a spiky component that is useful for overfitting but, in a favorable setting, does not harm prediction accuracy. We focus specifically on the linear regime for neural networks, where the network can be approximated by a linear model. In this regime, we demonstrate the success of gradient flow, and we consider benign overfitting with two-layer networks, giving an exact asymptotic analysis that precisely demonstrates the impact of overparametrization. We conclude by highlighting the key challenges that arise in extending these insights to realistic deep learning settings.