亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Coarse-Grained Reconfigurable Arrays (CGRAs) hold great promise as power-efficient edge accelerator, offering versatility beyond AI applications. Morpher, an open-source, architecture-adaptive CGRA design framework, is specifically designed to explore the vast design space of CGRAs. The comprehensive ecosystem of Morpher includes a tailored compiler, simulator, accelerator synthesis, and validation framework. This study provides an overview of Morpher, highlighting its capabilities in automatically compiling AI application kernels onto user-defined CGRA architectures and verifying their functionality. Through the Morpher framework, the versatility of CGRAs is harnessed to facilitate efficient compilation and verification of edge AI applications, covering important kernels representative of a wide range of embedded AI workloads. Morpher is available online at //github.com/ecolab-nus/morpher-v2.

相關內容

編(bian)譯器(Compiler),是一(yi)種(zhong)計算(suan)機程(cheng)序,它會(hui)將用某種(zhong)編(bian)程(cheng)語言(yan)寫成(cheng)的(de)源代碼(ma)(原始語言(yan)),轉換成(cheng)另一(yi)種(zhong)編(bian)程(cheng)語言(yan)(目標語言(yan))。

Central Bank Digital Currency (CBDC) is a novel form of money that could be issued and regulated by central banks, offering benefits such as programmability, security, and privacy. However, the design of a CBDC system presents numerous technical and social challenges. This paper presents the design and prototype of a non-custodial wallet, a device that enables users to store and spend CBDC in various contexts. To address the challenges of designing a CBDC system, we conducted a series of workshops with internal and external stakeholders, using methods such as storytelling, metaphors, and provotypes to communicate CBDC concepts, elicit user feedback and critique, and incorporate normative values into the technical design. We derived basic guidelines for designing CBDC systems that balance technical and social aspects, and reflect user needs and values. Our paper contributes to the CBDC discourse by demonstrating a practical example of how CBDC could be used in everyday life and by highlighting the importance of a user-centred approach.

A major challenge in the practical use of Machine Translation (MT) is that users lack guidance to make informed decisions about when to rely on outputs. Progress in quality estimation research provides techniques to automatically assess MT quality, but these techniques have primarily been evaluated in vitro by comparison against human judgments outside of a specific context of use. This paper evaluates quality estimation feedback in vivo with a human study simulating decision-making in high-stakes medical settings. Using Emergency Department discharge instructions, we study how interventions based on quality estimation versus backtranslation assist physicians in deciding whether to show MT outputs to a patient. We find that quality estimation improves appropriate reliance on MT, but backtranslation helps physicians detect more clinically harmful errors that QE alone often misses.

Trusted execution environments in several existing and upcoming CPUs demonstrate the success of confidential computing, with the caveat that tenants cannot securely use accelerators such as GPUs and FPGAs. In this paper, we reconsider the Arm Confidential Computing Architecture (CCA) design, an upcoming TEE feature in Armv9-A, to address this gap. We observe that CCA offers the right abstraction and mechanisms to allow confidential VMs to use accelerators as a first-class abstraction. We build ACAI, a CCA-based solution, with a principled approach of extending CCA security invariants to device-side access to address several critical security gaps. Our experimental results on GPU and FPGA demonstrate the feasibility of ACAI while maintaining security guarantees.

We present MsATL: the first tool for deciding the satisfiability of Alternating-time Temporal Logic (ATL) with imperfect information. MsATL combines SAT Modulo Monotonic Theories solvers with existing ATL model checkers: MCMAS and STV. The tool can deal with various semantics of ATL, including perfect and imperfect information, and can handle additional practical requirements. MsATL can be applied for synthesis of games that conform to a given specification, with the synthesised game often being minimal.

In legal NLP, Case Outcome Classification (COC) must not only be accurate but also trustworthy and explainable. Existing work in explainable COC has been limited to annotations by a single expert. However, it is well-known that lawyers may disagree in their assessment of case facts. We hence collect a novel dataset RAVE: Rationale Variation in ECHR1, which is obtained from two experts in the domain of international human rights law, for whom we observe weak agreement. We study their disagreements and build a two-level task-independent taxonomy, supplemented with COC-specific subcategories. To our knowledge, this is the first work in the legal NLP that focuses on human label variation. We quantitatively assess different taxonomy categories and find that disagreements mainly stem from underspecification of the legal context, which poses challenges given the typically limited granularity and noise in COC metadata. We further assess the explainablility of SOTA COC models on RAVE and observe limited agreement between models and experts. Overall, our case study reveals hitherto underappreciated complexities in creating benchmark datasets in legal NLP that revolve around identifying aspects of a case's facts supposedly relevant to its outcome.

This work presents an algorithm for tracking the shape of multiple entangling Deformable Linear Objects (DLOs) from a sequence of RGB-D images. This algorithm runs in real-time and improves on previous single-DLO tracking approaches by enabling tracking of multiple objects. This is achieved using Global-Local Topology Preservation (GLTP). This work uses the geodesic distance in GLTP to define the distance between separate objects and the distance between different parts of the same object. Tracking multiple entangling DLOs is demonstrated experimentally. The source code is publicly released.

Autonomous driving has achieved a significant milestone in research and development over the last decade. There is increasing interest in the field as the deployment of self-operating vehicles on roads promises safer and more ecologically friendly transportation systems. With the rise of computationally powerful artificial intelligence (AI) techniques, autonomous vehicles can sense their environment with high precision, make safe real-time decisions, and operate more reliably without human interventions. However, intelligent decision-making in autonomous cars is not generally understandable by humans in the current state of the art, and such deficiency hinders this technology from being socially acceptable. Hence, aside from making safe real-time decisions, the AI systems of autonomous vehicles also need to explain how these decisions are constructed in order to be regulatory compliant across many jurisdictions. Our study sheds a comprehensive light on developing explainable artificial intelligence (XAI) approaches for autonomous vehicles. In particular, we make the following contributions. First, we provide a thorough overview of the present gaps with respect to explanations in the state-of-the-art autonomous vehicle industry. We then show the taxonomy of explanations and explanation receivers in this field. Thirdly, we propose a framework for an architecture of end-to-end autonomous driving systems and justify the role of XAI in both debugging and regulating such systems. Finally, as future research directions, we provide a field guide on XAI approaches for autonomous driving that can improve operational safety and transparency towards achieving public approval by regulators, manufacturers, and all engaged stakeholders.

Pre-trained Language Models (PLMs) have achieved great success in various Natural Language Processing (NLP) tasks under the pre-training and fine-tuning paradigm. With large quantities of parameters, PLMs are computation-intensive and resource-hungry. Hence, model pruning has been introduced to compress large-scale PLMs. However, most prior approaches only consider task-specific knowledge towards downstream tasks, but ignore the essential task-agnostic knowledge during pruning, which may cause catastrophic forgetting problem and lead to poor generalization ability. To maintain both task-agnostic and task-specific knowledge in our pruned model, we propose ContrAstive Pruning (CAP) under the paradigm of pre-training and fine-tuning. It is designed as a general framework, compatible with both structured and unstructured pruning. Unified in contrastive learning, CAP enables the pruned model to learn from the pre-trained model for task-agnostic knowledge, and fine-tuned model for task-specific knowledge. Besides, to better retain the performance of the pruned model, the snapshots (i.e., the intermediate models at each pruning iteration) also serve as effective supervisions for pruning. Our extensive experiments show that adopting CAP consistently yields significant improvements, especially in extremely high sparsity scenarios. With only 3% model parameters reserved (i.e., 97% sparsity), CAP successfully achieves 99.2% and 96.3% of the original BERT performance in QQP and MNLI tasks. In addition, our probing experiments demonstrate that the model pruned by CAP tends to achieve better generalization ability.

Images can convey rich semantics and induce various emotions in viewers. Recently, with the rapid advancement of emotional intelligence and the explosive growth of visual data, extensive research efforts have been dedicated to affective image content analysis (AICA). In this survey, we will comprehensively review the development of AICA in the recent two decades, especially focusing on the state-of-the-art methods with respect to three main challenges -- the affective gap, perception subjectivity, and label noise and absence. We begin with an introduction to the key emotion representation models that have been widely employed in AICA and description of available datasets for performing evaluation with quantitative comparison of label noise and dataset bias. We then summarize and compare the representative approaches on (1) emotion feature extraction, including both handcrafted and deep features, (2) learning methods on dominant emotion recognition, personalized emotion prediction, emotion distribution learning, and learning from noisy data or few labels, and (3) AICA based applications. Finally, we discuss some challenges and promising research directions in the future, such as image content and context understanding, group emotion clustering, and viewer-image interaction.

Graph Neural Networks (GNNs) have been studied from the lens of expressive power and generalization. However, their optimization properties are less well understood. We take the first step towards analyzing GNN training by studying the gradient dynamics of GNNs. First, we analyze linearized GNNs and prove that despite the non-convexity of training, convergence to a global minimum at a linear rate is guaranteed under mild assumptions that we validate on real-world graphs. Second, we study what may affect the GNNs' training speed. Our results show that the training of GNNs is implicitly accelerated by skip connections, more depth, and/or a good label distribution. Empirical results confirm that our theoretical results for linearized GNNs align with the training behavior of nonlinear GNNs. Our results provide the first theoretical support for the success of GNNs with skip connections in terms of optimization, and suggest that deep GNNs with skip connections would be promising in practice.

北京阿比特科技有限公司