Educational chatbots come with a promise of interactive and personalized learning experiences, yet their development has been limited by the restricted free interaction capabilities of available platforms and the difficulty of encoding knowledge in a suitable format. Recent advances in language learning models with zero-shot learning capabilities, such as ChatGPT, suggest a new possibility for developing educational chatbots using a prompt-based approach. We present a case study with a simple system that enables mixed-turn chatbot interactions and we discuss the insights and preliminary guidelines obtained from initial tests. We examine ChatGPT's ability to pursue multiple interconnected learning objectives, adapt the educational activity to users' characteristics, such as culture, age, and level of education, and its ability to use diverse educational strategies and conversational styles. Although the results are encouraging, challenges are posed by the limited history maintained for the conversation and the highly structured form of responses by ChatGPT, as well as their variability, which can lead to an unexpected switch of the chatbot's role from a teacher to a therapist. We provide some initial guidelines to address these issues and to facilitate the development of effective educational chatbots.
Passive acoustic monitoring offers a scalable, non-invasive method for tracking global biodiversity and anthropogenic impacts on species. Although deep learning has become a vital tool for processing this data, current models are inflexible, typically cover only a handful of species, and are limited by data scarcity. In this work, we propose BioLingual, a new model for bioacoustics based on contrastive language-audio pretraining. We first aggregate bioacoustic archives into a language-audio dataset, called AnimalSpeak, with over a million audio-caption pairs holding information on species, vocalization context, and animal behavior. After training on this dataset to connect language and audio representations, our model can identify over a thousand species' calls across taxa, complete bioacoustic tasks zero-shot, and retrieve animal vocalization recordings from natural text queries. When fine-tuned, BioLingual sets a new state-of-the-art on nine tasks in the Benchmark of Animal Sounds. Given its broad taxa coverage and ability to be flexibly queried in human language, we believe this model opens new paradigms in ecological monitoring and research, including free-text search on the world's acoustic monitoring archives. We open-source our models, dataset, and code.
Lyrics generation is a well-known application in natural language generation research, with several previous studies focusing on generating accurate lyrics using precise control such as keywords, rhymes, etc. However, lyrics imitation, which involves writing new lyrics by imitating the style and content of the source lyrics, remains a challenging task due to the lack of a parallel corpus. In this paper, we introduce \textbf{\textit{Sudowoodo}}, a Chinese lyrics imitation system that can generate new lyrics based on the text of source lyrics. To address the issue of lacking a parallel training corpus for lyrics imitation, we propose a novel framework to construct a parallel corpus based on a keyword-based lyrics model from source lyrics. Then the pairs \textit{(new lyrics, source lyrics)} are used to train the lyrics imitation model. During the inference process, we utilize a post-processing module to filter and rank the generated lyrics, selecting the highest-quality ones. We incorporated audio information and aligned the lyrics with the audio to form the songs as a bonus. The human evaluation results show that our framework can perform better lyric imitation. Meanwhile, the \textit{Sudowoodo} system and demo video of the system is available at \href{//Sudowoodo.apps-hp.danlu.netease.com/}{Sudowoodo} and \href{//youtu.be/u5BBT_j1L5M}{//youtu.be/u5BBT\_j1L5M}.
Although many deep-learning-based super-resolution approaches have been proposed in recent years, because no ground truth is available in the inference stage, few can quantify the errors and uncertainties of the super-resolved results. For scientific visualization applications, however, conveying uncertainties of the results to scientists is crucial to avoid generating misleading or incorrect information. In this paper, we propose PSRFlow, a novel normalizing flow-based generative model for scientific data super-resolution that incorporates uncertainty quantification into the super-resolution process. PSRFlow learns the conditional distribution of the high-resolution data based on the low-resolution counterpart. By sampling from a Gaussian latent space that captures the missing information in the high-resolution data, one can generate different plausible super-resolution outputs. The efficient sampling in the Gaussian latent space allows our model to perform uncertainty quantification for the super-resolved results. During model training, we augment the training data with samples across various scales to make the model adaptable to data of different scales, achieving flexible super-resolution for a given input. Our results demonstrate superior performance and robust uncertainty quantification compared with existing methods such as interpolation and GAN-based super-resolution networks.
To use reinforcement learning from human feedback (RLHF) in practical applications, it is crucial to learn reward models from diverse sources of human feedback and to consider human factors involved in providing feedback of different types. However, the systematic study of learning from diverse types of feedback is held back by limited standardized tooling available to researchers. To bridge this gap, we propose RLHF-Blender, a configurable, interactive interface for learning from human feedback. RLHF-Blender provides a modular experimentation framework and implementation that enables researchers to systematically investigate the properties and qualities of human feedback for reward learning. The system facilitates the exploration of various feedback types, including demonstrations, rankings, comparisons, and natural language instructions, as well as studies considering the impact of human factors on their effectiveness. We discuss a set of concrete research opportunities enabled by RLHF-Blender. More information is available at //rlhfblender.info/.
Although contrastive learning methods have shown prevailing performance on a variety of representation learning tasks, they encounter difficulty when the training dataset is long-tailed. Many researchers have combined contrastive learning and a logit adjustment technique to address this problem, but the combinations are done ad-hoc and a theoretical background has not yet been provided. The goal of this paper is to provide the background and further improve the performance. First, we show that the fundamental reason contrastive learning methods struggle with long-tailed tasks is that they try to maximize the mutual information maximization between latent features and input data. As ground-truth labels are not considered in the maximization, they are not able to address imbalances between class labels. Rather, we interpret the long-tailed recognition task as a mutual information maximization between latent features and ground-truth labels. This approach integrates contrastive learning and logit adjustment seamlessly to derive a loss function that shows state-of-the-art performance on long-tailed recognition benchmarks. It also demonstrates its efficacy in image segmentation tasks, verifying its versatility beyond image classification.
In pace with developments in the research field of artificial intelligence, knowledge graphs (KGs) have attracted a surge of interest from both academia and industry. As a representation of semantic relations between entities, KGs have proven to be particularly relevant for natural language processing (NLP), experiencing a rapid spread and wide adoption within recent years. Given the increasing amount of research work in this area, several KG-related approaches have been surveyed in the NLP research community. However, a comprehensive study that categorizes established topics and reviews the maturity of individual research streams remains absent to this day. Contributing to closing this gap, we systematically analyzed 507 papers from the literature on KGs in NLP. Our survey encompasses a multifaceted review of tasks, research types, and contributions. As a result, we present a structured overview of the research landscape, provide a taxonomy of tasks, summarize our findings, and highlight directions for future work.
In contrast to batch learning where all training data is available at once, continual learning represents a family of methods that accumulate knowledge and learn continuously with data available in sequential order. Similar to the human learning process with the ability of learning, fusing, and accumulating new knowledge coming at different time steps, continual learning is considered to have high practical significance. Hence, continual learning has been studied in various artificial intelligence tasks. In this paper, we present a comprehensive review of the recent progress of continual learning in computer vision. In particular, the works are grouped by their representative techniques, including regularization, knowledge distillation, memory, generative replay, parameter isolation, and a combination of the above techniques. For each category of these techniques, both its characteristics and applications in computer vision are presented. At the end of this overview, several subareas, where continuous knowledge accumulation is potentially helpful while continual learning has not been well studied, are discussed.
Machine learning techniques have deeply rooted in our everyday life. However, since it is knowledge- and labor-intensive to pursue good learning performance, human experts are heavily involved in every aspect of machine learning. In order to make machine learning techniques easier to apply and reduce the demand for experienced human experts, automated machine learning (AutoML) has emerged as a hot topic with both industrial and academic interest. In this paper, we provide an up to date survey on AutoML. First, we introduce and define the AutoML problem, with inspiration from both realms of automation and machine learning. Then, we propose a general AutoML framework that not only covers most existing approaches to date but also can guide the design for new methods. Subsequently, we categorize and review the existing works from two aspects, i.e., the problem setup and the employed techniques. Finally, we provide a detailed analysis of AutoML approaches and explain the reasons underneath their successful applications. We hope this survey can serve as not only an insightful guideline for AutoML beginners but also an inspiration for future research.
Object detection typically assumes that training and test data are drawn from an identical distribution, which, however, does not always hold in practice. Such a distribution mismatch will lead to a significant performance drop. In this work, we aim to improve the cross-domain robustness of object detection. We tackle the domain shift on two levels: 1) the image-level shift, such as image style, illumination, etc, and 2) the instance-level shift, such as object appearance, size, etc. We build our approach based on the recent state-of-the-art Faster R-CNN model, and design two domain adaptation components, on image level and instance level, to reduce the domain discrepancy. The two domain adaptation components are based on H-divergence theory, and are implemented by learning a domain classifier in adversarial training manner. The domain classifiers on different levels are further reinforced with a consistency regularization to learn a domain-invariant region proposal network (RPN) in the Faster R-CNN model. We evaluate our newly proposed approach using multiple datasets including Cityscapes, KITTI, SIM10K, etc. The results demonstrate the effectiveness of our proposed approach for robust object detection in various domain shift scenarios.
Recently, deep learning has achieved very promising results in visual object tracking. Deep neural networks in existing tracking methods require a lot of training data to learn a large number of parameters. However, training data is not sufficient for visual object tracking as annotations of a target object are only available in the first frame of a test sequence. In this paper, we propose to learn hierarchical features for visual object tracking by using tree structure based Recursive Neural Networks (RNN), which have fewer parameters than other deep neural networks, e.g. Convolutional Neural Networks (CNN). First, we learn RNN parameters to discriminate between the target object and background in the first frame of a test sequence. Tree structure over local patches of an exemplar region is randomly generated by using a bottom-up greedy search strategy. Given the learned RNN parameters, we create two dictionaries regarding target regions and corresponding local patches based on the learned hierarchical features from both top and leaf nodes of multiple random trees. In each of the subsequent frames, we conduct sparse dictionary coding on all candidates to select the best candidate as the new target location. In addition, we online update two dictionaries to handle appearance changes of target objects. Experimental results demonstrate that our feature learning algorithm can significantly improve tracking performance on benchmark datasets.