Federated Learning (FL) is a decentralized machine learning paradigm where models are trained on distributed devices and are aggregated at a central server. Existing FL frameworks assume simple two-tier network topologies where end devices are directly connected to the aggregation server. While this is a practical mental model, it does not exploit the inherent topology of real-world distributed systems like the Internet-of-Things. We present Flight, a novel FL framework that supports complex hierarchical multi-tier topologies, asynchronous aggregation, and decouples the control plane from the data plane. We compare the performance of Flight against Flower, a state-of-the-art FL framework. Our results show that Flight scales beyond Flower, supporting up to 2048 simultaneous devices, and reduces FL makespan across several models. Finally, we show that Flight's hierarchical FL model can reduce communication overheads by more than 60%.
Generalist foundation models (GFMs) are renowned for their exceptional capability and flexibility in effectively generalizing across diverse tasks and modalities. In the field of medicine, while GFMs exhibit superior generalizability based on their extensive intrinsic knowledge as well as proficiency in instruction following and in-context learning, specialist models excel in precision due to their domain knowledge. In this work, for the first time, we explore the synergy between the GFM and specialist models, to enable precise medical image analysis on a broader scope. Specifically, we propose a cooperative framework, Generalist-Specialist Collaboration (GSCo), which consists of two stages, namely the construction of GFM and specialists, and collaborative inference on downstream tasks. In the construction stage, we develop MedDr, the largest open-source GFM tailored for medicine, showcasing exceptional instruction-following and in-context learning capabilities. Meanwhile, a series of lightweight specialists are crafted for downstream tasks with low computational cost. In the collaborative inference stage, we introduce two cooperative mechanisms, Mixture-of-Expert Diagnosis and Retrieval-Augmented Diagnosis, to harvest the generalist's in-context learning abilities alongside the specialists' domain expertise. For a comprehensive evaluation, we curate a large-scale benchmark featuring 28 datasets and about 250,000 images. Extensive results demonstrate that MedDr consistently outperforms state-of-the-art GFMs on downstream datasets. Furthermore, GSCo exceeds both GFMs and specialists across all out-of-domain disease diagnosis datasets. These findings indicate a significant paradigm shift in the application of GFMs, transitioning from separate models for specific tasks to a collaborative approach between GFMs and specialists, thereby advancing the frontiers of generalizable AI in medicine.
Federated continual learning (FCL) aims to learn from sequential data stream in the decentralized federated learning setting, while simultaneously mitigating the catastrophic forgetting issue in classical continual learning. Existing FCL methods usually employ typical rehearsal mechanisms, which could result in privacy violations or additional onerous storage and computational burdens. In this work, an efficient and non-IID robust federated continual learning framework, called Federated Prototype-Augmented Prompt Learning (FPPL), is proposed. The FPPL can collaboratively learn lightweight prompts augmented by prototypes without rehearsal. On the client side, a fusion function is employed to fully leverage the knowledge contained in task-specific prompts for alleviating catastrophic forgetting. Additionally, global prototypes aggregated from the server are used to obtain unified representation through contrastive learning, mitigating the impact of non-IID-derived data heterogeneity. On the server side, locally uploaded prototypes are utilized to perform debiasing on the classifier, further alleviating the performance degradation caused by both non-IID and catastrophic forgetting. Empirical evaluations demonstrate the effectiveness of FPPL, achieving notable performance with an efficient design while remaining robust to diverse non-IID degrees. Code is available at: //github.com/ycheoo/FPPL.
Class incremental learning (CIL) trains a network on sequential tasks with separated categories in each task but suffers from catastrophic forgetting, where models quickly lose previously learned knowledge when acquiring new tasks. The generalized CIL (GCIL) aims to address the CIL problem in a more real-world scenario, where incoming data have mixed data categories and unknown sample size distribution. Existing attempts for the GCIL either have poor performance or invade data privacy by saving exemplars. In this paper, we propose a new exemplar-free GCIL technique named generalized analytic continual learning (GACL). The GACL adopts analytic learning (a gradient-free training technique) and delivers an analytical (i.e., closed-form) solution to the GCIL scenario. This solution is derived via decomposing the incoming data into exposed and unexposed classes, thereby attaining a weight-invariant property, a rare yet valuable property supporting an equivalence between incremental learning and its joint training. Such an equivalence is crucial in GCIL settings as data distributions among different tasks no longer pose challenges to adopting our GACL. Theoretically, this equivalence property is validated through matrix analysis tools. Empirically, we conduct extensive experiments where, compared with existing GCIL methods, our GACL exhibits a consistently leading performance across various datasets and GCIL settings. Source code is available at //github.com/CHEN-YIZHU/GACL.
Federated Learning (FL) is a distributed machine learning paradigm that achieves a globally robust model through decentralized computation and periodic model synthesis, primarily focusing on the global model's accuracy over aggregated datasets of all participating clients. Personalized Federated Learning (PFL) instead tailors exclusive models for each client, aiming to enhance the accuracy of clients' individual models on specific local data distributions. Despite of their wide adoption, existing FL and PFL works have yet to comprehensively address the class-imbalance issue, one of the most critical challenges within the realm of data heterogeneity in PFL and FL research. In this paper, we propose FedReMa, an efficient PFL algorithm that can tackle class-imbalance by 1) utilizing an adaptive inter-client co-learning approach to identify and harness different clients' expertise on different data classes throughout various phases of the training process, and 2) employing distinct aggregation methods for clients' feature extractors and classifiers, with the choices informed by the different roles and implications of these model components. Specifically, driven by our experimental findings on inter-client similarity dynamics, we develop critical co-learning period (CCP), wherein we introduce a module named maximum difference segmentation (MDS) to assess and manage task relevance by analyzing the similarities between clients' logits of their classifiers. Outside the CCP, we employ an additional scheme for model aggregation that utilizes historical records of each client's most relevant peers to further enhance the personalization stability. We demonstrate the superiority of our FedReMa in extensive experiments.
Model library is an effective tool for improving the performance of single-model Out-of-Distribution (OoD) detector, mainly through model selection and detector fusion. However, existing methods in the literature do not provide uncertainty quantification for model selection results. Additionally, the model ensemble process primarily focuses on controlling the True Positive Rate (TPR) while neglecting the False Positive Rate (FPR). In this paper, we emphasize the significance of the proportion of models in the library that identify the test sample as an OoD sample. This proportion holds crucial information and directly influences the error rate of OoD detection.To address this, we propose inverting the commonly-used sequential p-value strategies. We define the rejection region initially and then estimate the error rate. Furthermore, we introduce a novel perspective from change-point detection and propose an approach for proportion estimation with automatic hyperparameter selection. We name the proposed approach as DOS-Storey-based Detector Ensemble (DSDE). Experimental results on CIFAR10 and CIFAR100 demonstrate the effectiveness of our approach in tackling OoD detection challenges. Specifically, the CIFAR10 experiments show that DSDE reduces the FPR from 11.07% to 3.31% compared to the top-performing single-model detector.
Causal Machine Learning (CausalML) is an umbrella term for machine learning methods that formalize the data-generation process as a structural causal model (SCM). This allows one to reason about the effects of changes to this process (i.e., interventions) and what would have happened in hindsight (i.e., counterfactuals). We categorize work in \causalml into five groups according to the problems they tackle: (1) causal supervised learning, (2) causal generative modeling, (3) causal explanations, (4) causal fairness, (5) causal reinforcement learning. For each category, we systematically compare its methods and point out open problems. Further, we review modality-specific applications in computer vision, natural language processing, and graph representation learning. Finally, we provide an overview of causal benchmarks and a critical discussion of the state of this nascent field, including recommendations for future work.
The incredible development of federated learning (FL) has benefited various tasks in the domains of computer vision and natural language processing, and the existing frameworks such as TFF and FATE has made the deployment easy in real-world applications. However, federated graph learning (FGL), even though graph data are prevalent, has not been well supported due to its unique characteristics and requirements. The lack of FGL-related framework increases the efforts for accomplishing reproducible research and deploying in real-world applications. Motivated by such strong demand, in this paper, we first discuss the challenges in creating an easy-to-use FGL package and accordingly present our implemented package FederatedScope-GNN (FS-G), which provides (1) a unified view for modularizing and expressing FGL algorithms; (2) comprehensive DataZoo and ModelZoo for out-of-the-box FGL capability; (3) an efficient model auto-tuning component; and (4) off-the-shelf privacy attack and defense abilities. We validate the effectiveness of FS-G by conducting extensive experiments, which simultaneously gains many valuable insights about FGL for the community. Moreover, we employ FS-G to serve the FGL application in real-world E-commerce scenarios, where the attained improvements indicate great potential business benefits. We publicly release FS-G, as submodules of FederatedScope, at //github.com/alibaba/FederatedScope to promote FGL's research and enable broad applications that would otherwise be infeasible due to the lack of a dedicated package.
Federated Learning (FL) is a decentralized machine-learning paradigm, in which a global server iteratively averages the model parameters of local users without accessing their data. User heterogeneity has imposed significant challenges to FL, which can incur drifted global models that are slow to converge. Knowledge Distillation has recently emerged to tackle this issue, by refining the server model using aggregated knowledge from heterogeneous users, other than directly averaging their model parameters. This approach, however, depends on a proxy dataset, making it impractical unless such a prerequisite is satisfied. Moreover, the ensemble knowledge is not fully utilized to guide local model learning, which may in turn affect the quality of the aggregated model. Inspired by the prior art, we propose a data-free knowledge distillation} approach to address heterogeneous FL, where the server learns a lightweight generator to ensemble user information in a data-free manner, which is then broadcasted to users, regulating local training using the learned knowledge as an inductive bias. Empirical studies powered by theoretical implications show that, our approach facilitates FL with better generalization performance using fewer communication rounds, compared with the state-of-the-art.
Reinforcement learning (RL) is a popular paradigm for addressing sequential decision tasks in which the agent has only limited environmental feedback. Despite many advances over the past three decades, learning in many domains still requires a large amount of interaction with the environment, which can be prohibitively expensive in realistic scenarios. To address this problem, transfer learning has been applied to reinforcement learning such that experience gained in one task can be leveraged when starting to learn the next, harder task. More recently, several lines of research have explored how tasks, or data samples themselves, can be sequenced into a curriculum for the purpose of learning a problem that may otherwise be too difficult to learn from scratch. In this article, we present a framework for curriculum learning (CL) in reinforcement learning, and use it to survey and classify existing CL methods in terms of their assumptions, capabilities, and goals. Finally, we use our framework to find open problems and suggest directions for future RL curriculum learning research.
Graph-based semi-supervised learning (SSL) is an important learning problem where the goal is to assign labels to initially unlabeled nodes in a graph. Graph Convolutional Networks (GCNs) have recently been shown to be effective for graph-based SSL problems. GCNs inherently assume existence of pairwise relationships in the graph-structured data. However, in many real-world problems, relationships go beyond pairwise connections and hence are more complex. Hypergraphs provide a natural modeling tool to capture such complex relationships. In this work, we explore the use of GCNs for hypergraph-based SSL. In particular, we propose HyperGCN, an SSL method which uses a layer-wise propagation rule for convolutional neural networks operating directly on hypergraphs. To the best of our knowledge, this is the first principled adaptation of GCNs to hypergraphs. HyperGCN is able to encode both the hypergraph structure and hypernode features in an effective manner. Through detailed experimentation, we demonstrate HyperGCN's effectiveness at hypergraph-based SSL.