In the last decade, conversational search has attracted considerable attention. However, most research has focused on systems that can support a \emph{single} searcher. In this paper, we explore how systems can support \emph{multiple} searchers collaborating over an instant messaging platform (i.e., Slack). We present a ``Wizard of Oz'' study in which 27 participant pairs collaborated on three information-seeking tasks over Slack. Participants were unable to search on their own and had to gather information by interacting with a \emph{searchbot} directly from the Slack channel. The role of the searchbot was played by a reference librarian. Conversational search systems must be capable of engaging in \emph{mixed-initiative} interaction by taking and relinquishing control of the conversation to fulfill different objectives. Discourse analysis research suggests that conversational agents can take \emph{two} levels of initiative: dialog- and task-level initiative. Agents take dialog-level initiative to establish mutual belief between agents and task-level initiative to influence the goals of the other agents. During the study, participants were exposed to three experimental conditions in which the searchbot could take different levels of initiative: (1) no initiative, (2) only dialog-level initiative, and (3) both dialog- and task-level initiative. In this paper, we focus on understanding the Wizard's actions. Specifically, we focus on understanding the Wizard's motivations for taking initiative and their rationale for the timing of each intervention. To gain insights about the Wizard's actions, we conducted a stimulated recall interview with the Wizard. We present findings from a qualitative analysis of this interview data and discuss implications for designing conversational search systems to support collaborative search.
Federated recommender systems (FedRecs) have been widely explored recently due to their ability to protect user data privacy. In FedRecs, a central server collaboratively learns recommendation models by sharing model public parameters with clients, thereby offering a privacy-preserving solution. Unfortunately, the exposure of model parameters leaves a backdoor for adversaries to manipulate FedRecs. Existing works about FedRec security already reveal that items can easily be promoted by malicious users via model poisoning attacks, but all of them mainly focus on FedRecs with only collaborative information (i.e., user-item interactions). We argue that these attacks are effective because of the data sparsity of collaborative signals. In practice, auxiliary information, such as products' visual descriptions, is used to alleviate collaborative filtering data's sparsity. Therefore, when incorporating visual information in FedRecs, all existing model poisoning attacks' effectiveness becomes questionable. In this paper, we conduct extensive experiments to verify that incorporating visual information can beat existing state-of-the-art attacks in reasonable settings. However, since visual information is usually provided by external sources, simply including it will create new security problems. Specifically, we propose a new kind of poisoning attack for visually-aware FedRecs, namely image poisoning attacks, where adversaries can gradually modify the uploaded image to manipulate item ranks during FedRecs' training process. Furthermore, we reveal that the potential collaboration between image poisoning attacks and model poisoning attacks will make visually-aware FedRecs more vulnerable to being manipulated. To safely use visual information, we employ a diffusion model in visually-aware FedRecs to purify each uploaded image and detect the adversarial images.
The remarkable achievements of Large Language Models (LLMs) have led to the emergence of a novel recommendation paradigm -- Recommendation via LLM (RecLLM). Nevertheless, it is important to note that LLMs may contain social prejudices, and therefore, the fairness of recommendations made by RecLLM requires further investigation. To avoid the potential risks of RecLLM, it is imperative to evaluate the fairness of RecLLM with respect to various sensitive attributes on the user side. Due to the differences between the RecLLM paradigm and the traditional recommendation paradigm, it is problematic to directly use the fairness benchmark of traditional recommendation. To address the dilemma, we propose a novel benchmark called Fairness of Recommendation via LLM (FaiRLLM). This benchmark comprises carefully crafted metrics and a dataset that accounts for eight sensitive attributes1 in two recommendation scenarios: music and movies. By utilizing our FaiRLLM benchmark, we conducted an evaluation of ChatGPT and discovered that it still exhibits unfairness to some sensitive attributes when generating recommendations. Our code and dataset can be found at //github.com/jizhi-zhang/FaiRLLM.
Evaluating human-AI decision-making systems is an emerging challenge as new ways of combining multiple AI models towards a specific goal are proposed every day. As humans interact with AI in decision-making systems, multiple factors may be present in a task including trust, interpretability, and explainability, amongst others. In this context, this work proposes a retrospective method to support a more holistic understanding of how people interact with and connect multiple AI models and combine multiple outputs in human-AI decision-making systems. The method consists of employing a retrospective end-user walkthrough with the objective of providing support to HCI practitioners so that they may gain an understanding of the higher order cognitive processes in place and the role that AI model outputs play in human-AI decision-making. The method was qualitatively assessed with 29 participants (four participants in a pilot phase; 25 participants in the main user study) interacting with a human-AI decision-making system in the context of financial decision-making. The system combines visual analytics, three AI models for revenue prediction, AI-supported analogues analysis, and hypothesis testing using external news and natural language processing to provide multiple means for comparing companies. Beyond results on tasks and usability problems, outcomes presented suggest that the method is promising in highlighting why AI models are ignored, used, or trusted, and how future interactions are planned. We suggest that HCI practitioners researching human-AI interaction can benefit by adding this step to user studies in a debriefing stage as a retrospective Thinking-Aloud protocol would be applied, but with emphasis on revisiting tasks and understanding why participants ignored or connected predictions while performing a task.
A number of information retrieval studies have been done to assess which statistical techniques are appropriate for comparing systems. However, these studies are focused on TREC-style experiments, which typically have fewer than 100 topics. There is no similar line of work for large search and recommendation experiments; such studies typically have thousands of topics or users and much sparser relevance judgements, so it is not clear if recommendations for analyzing traditional TREC experiments apply to these settings. In this paper, we empirically study the behavior of significance tests with large search and recommendation evaluation data. Our results show that the Wilcoxon and Sign tests show significantly higher Type-1 error rates for large sample sizes than the bootstrap, randomization and t-tests, which were more consistent with the expected error rate. While the statistical tests displayed differences in their power for smaller sample sizes, they showed no difference in their power for large sample sizes. We recommend the sign and Wilcoxon tests should not be used to analyze large scale evaluation results. Our result demonstrate that with Top-N recommendation and large search evaluation data, most tests would have a 100% chance of finding statistically significant results. Therefore, the effect size should be used to determine practical or scientific significance.
The debut of ChatGPT has recently attracted the attention of the natural language processing (NLP) community and beyond. Existing studies have demonstrated that ChatGPT shows significant improvement in a range of downstream NLP tasks, but the capabilities and limitations of ChatGPT in terms of recommendations remain unclear. In this study, we aim to conduct an empirical analysis of ChatGPT's recommendation ability from an Information Retrieval (IR) perspective, including point-wise, pair-wise, and list-wise ranking. To achieve this goal, we re-formulate the above three recommendation policies into a domain-specific prompt format. Through extensive experiments on four datasets from different domains, we demonstrate that ChatGPT outperforms other large language models across all three ranking policies. Based on the analysis of unit cost improvements, we identify that ChatGPT with list-wise ranking achieves the best trade-off between cost and performance compared to point-wise and pair-wise ranking. Moreover, ChatGPT shows the potential for mitigating the cold start problem and explainable recommendation. To facilitate further explorations in this area, the full code and detailed original results are open-sourced at //github.com/rainym00d/LLM4RS.
Crowdsourced dialogue corpora are usually limited in scale and topic coverage due to the expensive cost of data curation. This would hinder the generalization of downstream dialogue models to open-domain topics. In this work, we leverage large language models for dialogue augmentation in the task of emotional support conversation (ESC). By treating dialogue augmentation as a dialogue completion task, we prompt a fine-tuned language model to complete full dialogues from available dialogue posts of various topics, which are then postprocessed based on heuristics. Applying this approach, we construct AugESC, an augmented dataset for the ESC task, which largely extends the scale and topic coverage of the crowdsourced ESConv corpus. Through comprehensive human evaluation, we demonstrate that our approach is superior to strong baselines of dialogue augmentation and that AugESC has comparable dialogue quality to the crowdsourced corpus. We also conduct human interactive evaluation and prove that post-training on AugESC improves downstream dialogue models' generalization ability to open-domain topics. These results suggest the utility of AugESC and highlight the potential of large language models in improving data-scarce dialogue generation tasks.
Recommender systems exploit interaction history to estimate user preference, having been heavily used in a wide range of industry applications. However, static recommendation models are difficult to answer two important questions well due to inherent shortcomings: (a) What exactly does a user like? (b) Why does a user like an item? The shortcomings are due to the way that static models learn user preference, i.e., without explicit instructions and active feedback from users. The recent rise of conversational recommender systems (CRSs) changes this situation fundamentally. In a CRS, users and the system can dynamically communicate through natural language interactions, which provide unprecedented opportunities to explicitly obtain the exact preference of users. Considerable efforts, spread across disparate settings and applications, have been put into developing CRSs. Existing models, technologies, and evaluation methods for CRSs are far from mature. In this paper, we provide a systematic review of the techniques used in current CRSs. We summarize the key challenges of developing CRSs into five directions: (1) Question-based user preference elicitation. (2) Multi-turn conversational recommendation strategies. (3) Dialogue understanding and generation. (4) Exploitation-exploration trade-offs. (5) Evaluation and user simulation. These research directions involve multiple research fields like information retrieval (IR), natural language processing (NLP), and human-computer interaction (HCI). Based on these research directions, we discuss some future challenges and opportunities. We provide a road map for researchers from multiple communities to get started in this area. We hope this survey helps to identify and address challenges in CRSs and inspire future research.
Search in social networks such as Facebook poses different challenges than in classical web search: besides the query text, it is important to take into account the searcher's context to provide relevant results. Their social graph is an integral part of this context and is a unique aspect of Facebook search. While embedding-based retrieval (EBR) has been applied in eb search engines for years, Facebook search was still mainly based on a Boolean matching model. In this paper, we discuss the techniques for applying EBR to a Facebook Search system. We introduce the unified embedding framework developed to model semantic embeddings for personalized search, and the system to serve embedding-based retrieval in a typical search system based on an inverted index. We discuss various tricks and experiences on end-to-end optimization of the whole system, including ANN parameter tuning and full-stack optimization. Finally, we present our progress on two selected advanced topics about modeling. We evaluated EBR on verticals for Facebook Search with significant metrics gains observed in online A/B experiments. We believe this paper will provide useful insights and experiences to help people on developing embedding-based retrieval systems in search engines.
Due to the significance and value in human-computer interaction and natural language processing, task-oriented dialog systems are attracting more and more attention in both academic and industrial communities. In this paper, we survey recent advances and challenges in an issue-specific manner. We discuss three critical topics for task-oriented dialog systems: (1) improving data efficiency to facilitate dialog system modeling in low-resource settings, (2) modeling multi-turn dynamics for dialog policy learning to achieve better task-completion performance, and (3) integrating domain ontology knowledge into the dialog model in both pipeline and end-to-end models. We also review the recent progresses in dialog evaluation and some widely-used corpora. We believe that this survey can shed a light on future research in task-oriented dialog systems.
Explainable Recommendation refers to the personalized recommendation algorithms that address the problem of why -- they not only provide the user with the recommendations, but also make the user aware why such items are recommended by generating recommendation explanations, which help to improve the effectiveness, efficiency, persuasiveness, and user satisfaction of recommender systems. In recent years, a large number of explainable recommendation approaches -- especially model-based explainable recommendation algorithms -- have been proposed and adopted in real-world systems. In this survey, we review the work on explainable recommendation that has been published in or before the year of 2018. We first high-light the position of explainable recommendation in recommender system research by categorizing recommendation problems into the 5W, i.e., what, when, who, where, and why. We then conduct a comprehensive survey of explainable recommendation itself in terms of three aspects: 1) We provide a chronological research line of explanations in recommender systems, including the user study approaches in the early years, as well as the more recent model-based approaches. 2) We provide a taxonomy for explainable recommendation algorithms, including user-based, item-based, model-based, and post-model explanations. 3) We summarize the application of explainable recommendation in different recommendation tasks, including product recommendation, social recommendation, POI recommendation, etc. We devote a chapter to discuss the explanation perspectives in the broader IR and machine learning settings, as well as their relationship with explainable recommendation research. We end the survey by discussing potential future research directions to promote the explainable recommendation research area.