Single-view clothed human reconstruction holds a central position in virtual reality applications, especially in contexts involving intricate human motions. It presents notable challenges in achieving realistic clothing deformation. Current methodologies often overlook the influence of motion on surface deformation, resulting in surfaces lacking the constraints imposed by global motion. To overcome these limitations, we introduce an innovative framework, Motion-Based 3D Clothed Humans Synthesis (MOSS), which employs kinematic information to achieve motion-aware Gaussian split on the human surface. Our framework consists of two modules: Kinematic Gaussian Locating Splatting (KGAS) and Surface Deformation Detector (UID). KGAS incorporates matrix-Fisher distribution to propagate global motion across the body surface. The density and rotation factors of this distribution explicitly control the Gaussians, thereby enhancing the realism of the reconstructed surface. Additionally, to address local occlusions in single-view, based on KGAS, UID identifies significant surfaces, and geometric reconstruction is performed to compensate for these deformations. Experimental results demonstrate that MOSS achieves state-of-the-art visual quality in 3D clothed human synthesis from monocular videos. Notably, we improve the Human NeRF and the Gaussian Splatting by 33.94% and 16.75% in LPIPS* respectively. Codes are available at //wanghongsheng01.github.io/MOSS/.
Deepfake techniques generate highly realistic data, making it challenging for humans to discern between actual and artificially generated images. Recent advancements in deep learning-based deepfake detection methods, particularly with diffusion models, have shown remarkable progress. However, there is a growing demand for real-world applications to detect unseen individuals, deepfake techniques, and scenarios. To address this limitation, we propose a Prototype-based Unified Framework for Deepfake Detection (PUDD). PUDD offers a detection system based on similarity, comparing input data against known prototypes for video classification and identifying potential deepfakes or previously unseen classes by analyzing drops in similarity. Our extensive experiments reveal three key findings: (1) PUDD achieves an accuracy of 95.1% on Celeb-DF, outperforming state-of-the-art deepfake detection methods; (2) PUDD leverages image classification as the upstream task during training, demonstrating promising performance in both image classification and deepfake detection tasks during inference; (3) PUDD requires only 2.7 seconds for retraining on new data and emits 10$^{5}$ times less carbon compared to the state-of-the-art model, making it significantly more environmentally friendly.
Temporal relation extraction (TRE) aims to grasp the evolution of events or actions, and thus shape the workflow of associated tasks, so it holds promise in helping understand task requests initiated by requesters in crowdsourcing systems. However, existing methods still struggle with limited and unevenly distributed annotated data. Therefore, inspired by the abundant global knowledge stored within pre-trained language models (PLMs), we propose a multi-task prompt learning framework for TRE (TemPrompt), incorporating prompt tuning and contrastive learning to tackle these issues. To elicit more effective prompts for PLMs, we introduce a task-oriented prompt construction approach that thoroughly takes the myriad factors of TRE into consideration for automatic prompt generation. In addition, we present temporal event reasoning as a supplement to bolster the model's focus on events and temporal cues. The experimental results demonstrate that TemPrompt outperforms all compared baselines across the majority of metrics under both standard and few-shot settings. A case study is provided to validate its effectiveness in crowdsourcing scenarios.
In contemporary computer vision applications, particularly image classification, architectural backbones pre-trained on large datasets like ImageNet are commonly employed as feature extractors. Despite the widespread use of these pre-trained convolutional neural networks (CNNs), there remains a gap in understanding the performance of various resource-efficient backbones across diverse domains and dataset sizes. Our study systematically evaluates multiple lightweight, pre-trained CNN backbones under consistent training settings across a variety of datasets, including natural images, medical images, galaxy images, and remote sensing images. This comprehensive analysis aims to aid machine learning practitioners in selecting the most suitable backbone for their specific problem, especially in scenarios involving small datasets where fine-tuning a pre-trained network is crucial. Even though attention-based architectures are gaining popularity, we observed that they tend to perform poorly under low data finetuning tasks compared to CNNs. We also observed that some CNN architectures such as ConvNeXt, RegNet and EfficientNet performs well compared to others on a diverse set of domains consistently. Our findings provide actionable insights into the performance trade-offs and effectiveness of different backbones, facilitating informed decision-making in model selection for a broad spectrum of computer vision domains. Our code is available here: //github.com/pranavphoenix/Backbones
Semi-supervised learning (SSL) has shown considerable potential in medical image segmentation, primarily leveraging consistency regularization and pseudo-labeling. However, many SSL approaches only pay attention to low-level consistency and overlook the significance of pseudo-label reliability. Therefore, in this work, we propose an adversarial self-training consistency framework (AstMatch). Firstly, we design an adversarial consistency regularization (ACR) approach to enhance knowledge transfer and strengthen prediction consistency under varying perturbation intensities. Second, we apply a feature matching loss for adversarial training to incorporate high-level consistency regularization. Additionally, we present the pyramid channel attention (PCA) and efficient channel and spatial attention (ECSA) modules to improve the discriminator's performance. Finally, we propose an adaptive self-training (AST) approach to ensure the pseudo-labels' quality. The proposed AstMatch has been extensively evaluated with cutting-edge SSL methods on three public-available datasets. The experimental results under different labeled ratios indicate that AstMatch outperforms other existing methods, achieving new state-of-the-art performance. Our code will be available at //github.com/GuanghaoZhu663/AstMatch.
Research in toxicity detection in natural language processing for the speech modality (audio-based) is quite limited, particularly for languages other than English. To address these limitations and lay the groundwork for truly multilingual audio-based toxicity detection, we introduce MuTox, the first highly multilingual audio-based dataset with toxicity labels. The dataset comprises 20,000 audio utterances for English and Spanish, and 4,000 for the other 19 languages. To demonstrate the quality of this dataset, we trained the MuTox audio-based toxicity classifier, which enables zero-shot toxicity detection across a wide range of languages. This classifier outperforms existing text-based trainable classifiers by more than 1% AUC, while expanding the language coverage more than tenfold. When compared to a wordlist-based classifier that covers a similar number of languages, MuTox improves precision and recall by approximately 2.5 times. This significant improvement underscores the potential of MuTox in advancing the field of audio-based toxicity detection.
As opposed to evaluating computation and logic-based reasoning, current benchmarks for evaluating large language models (LLMs) in medicine are primarily focused on question-answering involving domain knowledge and descriptive reasoning. While such qualitative capabilities are vital to medical diagnosis, in real-world scenarios, doctors frequently use clinical calculators that follow quantitative equations and rule-based reasoning paradigms for evidence-based decision support. To this end, we propose MedCalc-Bench, a first-of-its-kind dataset focused on evaluating the medical calculation capability of LLMs. MedCalc-Bench contains an evaluation set of over 1000 manually reviewed instances from 55 different medical calculation tasks. Each instance in MedCalc-Bench consists of a patient note, a question requesting to compute a specific medical value, a ground truth answer, and a step-by-step explanation showing how the answer is obtained. While our evaluation results show the potential of LLMs in this area, none of them are effective enough for clinical settings. Common issues include extracting the incorrect entities, not using the correct equation or rules for a calculation task, or incorrectly performing the arithmetic for the computation. We hope our study highlights the quantitative knowledge and reasoning gaps in LLMs within medical settings, encouraging future improvements of LLMs for various clinical calculation tasks.
The emergence of large language models (LLMs) has substantially influenced natural language processing, demonstrating exceptional results across various tasks. In this study, we employ ``Introspective Tips" to facilitate LLMs in self-optimizing their decision-making. By introspectively examining trajectories, LLM refines its policy by generating succinct and valuable tips. Our method enhances the agent's performance in both few-shot and zero-shot learning situations by considering three essential scenarios: learning from the agent's past experiences, integrating expert demonstrations, and generalizing across diverse games. Importantly, we accomplish these improvements without fine-tuning the LLM parameters; rather, we adjust the prompt to generalize insights from the three aforementioned situations. Our framework not only supports but also emphasizes the advantage of employing LLM in in-contxt decision-making. Experiments involving over 100 games in TextWorld illustrate the superior performance of our approach.
Multiple instance learning (MIL) is a powerful tool to solve the weakly supervised classification in whole slide image (WSI) based pathology diagnosis. However, the current MIL methods are usually based on independent and identical distribution hypothesis, thus neglect the correlation among different instances. To address this problem, we proposed a new framework, called correlated MIL, and provided a proof for convergence. Based on this framework, we devised a Transformer based MIL (TransMIL), which explored both morphological and spatial information. The proposed TransMIL can effectively deal with unbalanced/balanced and binary/multiple classification with great visualization and interpretability. We conducted various experiments for three different computational pathology problems and achieved better performance and faster convergence compared with state-of-the-art methods. The test AUC for the binary tumor classification can be up to 93.09% over CAMELYON16 dataset. And the AUC over the cancer subtypes classification can be up to 96.03% and 98.82% over TCGA-NSCLC dataset and TCGA-RCC dataset, respectively.
Visual dialogue is a challenging task that needs to extract implicit information from both visual (image) and textual (dialogue history) contexts. Classical approaches pay more attention to the integration of the current question, vision knowledge and text knowledge, despising the heterogeneous semantic gaps between the cross-modal information. In the meantime, the concatenation operation has become de-facto standard to the cross-modal information fusion, which has a limited ability in information retrieval. In this paper, we propose a novel Knowledge-Bridge Graph Network (KBGN) model by using graph to bridge the cross-modal semantic relations between vision and text knowledge in fine granularity, as well as retrieving required knowledge via an adaptive information selection mode. Moreover, the reasoning clues for visual dialogue can be clearly drawn from intra-modal entities and inter-modal bridges. Experimental results on VisDial v1.0 and VisDial-Q datasets demonstrate that our model outperforms exiting models with state-of-the-art results.
Most object recognition approaches predominantly focus on learning discriminative visual patterns while overlooking the holistic object structure. Though important, structure modeling usually requires significant manual annotations and therefore is labor-intensive. In this paper, we propose to "look into object" (explicitly yet intrinsically model the object structure) through incorporating self-supervisions into the traditional framework. We show the recognition backbone can be substantially enhanced for more robust representation learning, without any cost of extra annotation and inference speed. Specifically, we first propose an object-extent learning module for localizing the object according to the visual patterns shared among the instances in the same category. We then design a spatial context learning module for modeling the internal structures of the object, through predicting the relative positions within the extent. These two modules can be easily plugged into any backbone networks during training and detached at inference time. Extensive experiments show that our look-into-object approach (LIO) achieves large performance gain on a number of benchmarks, including generic object recognition (ImageNet) and fine-grained object recognition tasks (CUB, Cars, Aircraft). We also show that this learning paradigm is highly generalizable to other tasks such as object detection and segmentation (MS COCO). Project page: //github.com/JDAI-CV/LIO.