We present an oracle-efficient relaxation for the adversarial contextual bandits problem, where the contexts are sequentially drawn i.i.d from a known distribution and the cost sequence is chosen by an online adversary. Our algorithm has a regret bound of $O(T^{\frac{2}{3}}(K\log(|\Pi|))^{\frac{1}{3}})$ and makes at most $O(K)$ calls per round to an offline optimization oracle, where $K$ denotes the number of actions, $T$ denotes the number of rounds and $\Pi$ denotes the set of policies. This is the first result to improve the prior best bound of $O((TK)^{\frac{2}{3}}(\log(|\Pi|))^{\frac{1}{3}})$ as obtained by Syrgkanis et al. at NeurIPS 2016, and the first to match the original bound of Langford and Zhang at NeurIPS 2007 which was obtained for the stochastic case.
While coresets have been growing in terms of their application, barring few exceptions, they have mostly been limited to unsupervised settings. We consider supervised classification problems, and non-decomposable evaluation measures in such settings. We show that stratified uniform sampling based coresets have excellent empirical performance that are backed by theoretical guarantees too. We focus on the F1 score and Matthews Correlation Coefficient, two widely used non-decomposable objective functions that are nontrivial to optimize for and show that uniform coresets attain a lower bound for coreset size, and have good empirical performance, comparable with ``smarter'' coreset construction strategies.
Class incremental learning aims to solve a problem that arises when continuously adding unseen class instances to an existing model This approach has been extensively studied in the context of image classification; however its applicability to object detection is not well established yet. Existing frameworks using replay methods mainly collect replay data without considering the model being trained and tend to rely on randomness or the number of labels of each sample. Also, despite the effectiveness of the replay, it was not yet optimized for the object detection task. In this paper, we introduce an effective buffer training strategy (eBTS) that creates the optimized replay buffer on object detection. Our approach incorporates guarantee minimum and hierarchical sampling to establish the buffer customized to the trained model. %These methods can facilitate effective retrieval of prior knowledge. Furthermore, we use the circular experience replay training to optimally utilize the accumulated buffer data. Experiments on the MS COCO dataset demonstrate that our eBTS achieves state-of-the-art performance compared to the existing replay schemes.
We now have a wide range of proof assistants available for compositional reasoning in monoidal or higher categories which are free on some generating signature. However, none of these allow us to represent categorical operations such as products, equalizers, and similar logical techniques. Here we show how the foundational mathematical formalism of one such proof assistant can be generalized, replacing the conventional notion of string diagram as a geometrical entity living inside an n-cube with a posetal variant that allows exotic branching structure. We show that these generalized diagrams have richer behaviour with respect to categorical limits, and give an algorithm for computing limits in this setting, with a view towards future application in proof assistants.
The prevalence of the powerful multilingual models, such as Whisper, has significantly advanced the researches on speech recognition. However, these models often struggle with handling the code-switching setting, which is essential in multilingual speech recognition. Recent studies have attempted to address this setting by separating the modules for different languages to ensure distinct latent representations for languages. Some other methods considered the switching mechanism based on language identification. In this study, a new attention-guided adaptation is proposed to conduct parameter-efficient learning for bilingual ASR. This method selects those attention heads in a model which closely express language identities and then guided those heads to be correctly attended with their corresponding languages. The experiments on the Mandarin-English code-switching speech corpus show that the proposed approach achieves a 14.2% mixed error rate, surpassing state-of-the-art method, where only 5.6% additional parameters over Whisper are trained.
The problem of designing connectivity oracles supporting vertex failures is one of the basic data structures problems for undirected graphs. It is already well understood: previous works [Duan--Pettie STOC'10; Long--Saranurak FOCS'22] achieve query time linear in the number of failed vertices, and it is conditionally optimal as long as we require preprocessing time polynomial in the size of the graph and update time polynomial in the number of failed vertices. We revisit this problem in the paradigm of algorithms with predictions: we ask if the query time can be improved if the set of failed vertices can be predicted beforehand up to a small number of errors. More specifically, we design a data structure that, given a graph $G=(V,E)$ and a set of vertices predicted to fail $\widehat{D} \subseteq V$ of size $d=|\widehat{D}|$, preprocesses it in time $\tilde{O}(d|E|)$ and then can receive an update given as the symmetric difference between the predicted and the actual set of failed vertices $\widehat{D} \triangle D = (\widehat{D} \setminus D) \cup (D \setminus \widehat{D})$ of size $\eta = |\widehat{D} \triangle D|$, process it in time $\tilde{O}(\eta^4)$, and after that answer connectivity queries in $G \setminus D$ in time $O(\eta)$. Viewed from another perspective, our data structure provides an improvement over the state of the art for the \emph{fully dynamic subgraph connectivity problem} in the \emph{sensitivity setting} [Henzinger--Neumann ESA'16]. We argue that the preprocessing time and query time of our data structure are conditionally optimal under standard fine-grained complexity assumptions.
Unlike opaque object, novel view synthesis of transparent object is a challenging task, because transparent object refracts light of background causing visual distortions on the transparent object surface along the viewpoint change. Recently introduced Neural Radiance Fields (NeRF) is a view synthesis method. Thanks to its remarkable performance improvement, lots of following applications based on NeRF in various topics have been developed. However, if an object with a different refractive index is included in a scene such as transparent object, NeRF shows limited performance because refracted light ray at the surface of the transparent object is not appropriately considered. To resolve the problem, we propose a NeRF-based method consisting of the following three steps: First, we reconstruct a three-dimensional shape of a transparent object using visual hull. Second, we simulate the refraction of the rays inside of the transparent object according to Snell's law. Last, we sample points through refracted rays and put them into NeRF. Experimental evaluation results demonstrate that our method addresses the limitation of conventional NeRF with transparent objects.
Operational consistent query answering (CQA) is a recent framework for CQA based on revised definitions of repairs, which are built by applying a sequence of operations (e.g., fact deletions) starting from an inconsistent database until we reach a database that is consistent w.r.t. the given set of constraints. It has been recently shown that there are efficient approximations for computing the percentage of repairs, as well as of sequences of operations leading to repairs, that entail a given query when we focus on primary keys, conjunctive queries, and assuming the query is fixed (i.e., in data complexity). However, it has been left open whether such approximations exist when the query is part of the input (i.e., in combined complexity). We show that this is the case when we focus on self-join-free conjunctive queries of bounded generelized hypertreewidth. We also show that it is unlikely that efficient approximation schemes exist once we give up one of the adopted syntactic restrictions, i.e., self-join-freeness or bounding the generelized hypertreewidth. Towards the desired approximation schemes, we introduce a novel counting complexity class, called SpanTL, show that each problem in SpanTL admits an efficient approximation scheme by using a recent approximability result in the context of tree automata, and then place the problems of interest in SpanTL.
Federated Learning (FL) is a decentralized machine-learning paradigm, in which a global server iteratively averages the model parameters of local users without accessing their data. User heterogeneity has imposed significant challenges to FL, which can incur drifted global models that are slow to converge. Knowledge Distillation has recently emerged to tackle this issue, by refining the server model using aggregated knowledge from heterogeneous users, other than directly averaging their model parameters. This approach, however, depends on a proxy dataset, making it impractical unless such a prerequisite is satisfied. Moreover, the ensemble knowledge is not fully utilized to guide local model learning, which may in turn affect the quality of the aggregated model. Inspired by the prior art, we propose a data-free knowledge distillation} approach to address heterogeneous FL, where the server learns a lightweight generator to ensemble user information in a data-free manner, which is then broadcasted to users, regulating local training using the learned knowledge as an inductive bias. Empirical studies powered by theoretical implications show that, our approach facilitates FL with better generalization performance using fewer communication rounds, compared with the state-of-the-art.
Knowledge graph embedding, which aims to represent entities and relations as low dimensional vectors (or matrices, tensors, etc.), has been shown to be a powerful technique for predicting missing links in knowledge graphs. Existing knowledge graph embedding models mainly focus on modeling relation patterns such as symmetry/antisymmetry, inversion, and composition. However, many existing approaches fail to model semantic hierarchies, which are common in real-world applications. To address this challenge, we propose a novel knowledge graph embedding model---namely, Hierarchy-Aware Knowledge Graph Embedding (HAKE)---which maps entities into the polar coordinate system. HAKE is inspired by the fact that concentric circles in the polar coordinate system can naturally reflect the hierarchy. Specifically, the radial coordinate aims to model entities at different levels of the hierarchy, and entities with smaller radii are expected to be at higher levels; the angular coordinate aims to distinguish entities at the same level of the hierarchy, and these entities are expected to have roughly the same radii but different angles. Experiments demonstrate that HAKE can effectively model the semantic hierarchies in knowledge graphs, and significantly outperforms existing state-of-the-art methods on benchmark datasets for the link prediction task.
Benefit from the quick development of deep learning techniques, salient object detection has achieved remarkable progresses recently. However, there still exists following two major challenges that hinder its application in embedded devices, low resolution output and heavy model weight. To this end, this paper presents an accurate yet compact deep network for efficient salient object detection. More specifically, given a coarse saliency prediction in the deepest layer, we first employ residual learning to learn side-output residual features for saliency refinement, which can be achieved with very limited convolutional parameters while keep accuracy. Secondly, we further propose reverse attention to guide such side-output residual learning in a top-down manner. By erasing the current predicted salient regions from side-output features, the network can eventually explore the missing object parts and details which results in high resolution and accuracy. Experiments on six benchmark datasets demonstrate that the proposed approach compares favorably against state-of-the-art methods, and with advantages in terms of simplicity, efficiency (45 FPS) and model size (81 MB).