Semantic-driven 3D shape generation aims to generate 3D objects conditioned on text. Previous works face problems with single-category generation, low-frequency 3D details, and requiring a large number of paired datasets for training. To tackle these challenges, we propose a multi-category conditional diffusion model. Specifically, 1) to alleviate the problem of lack of large-scale paired data, we bridge the text, 2D image and 3D shape based on the pre-trained CLIP model, and 2) to obtain the multi-category 3D shape feature, we apply the conditional flow model to generate 3D shape vector conditioned on CLIP embedding. 3) to generate multi-category 3D shape, we employ the hidden-layer diffusion model conditioned on the multi-category shape vector, which greatly reduces the training time and memory consumption.
We present TinyLlama, a compact 1.1B language model pretrained on around 1 trillion tokens for approximately 3 epochs. Building on the architecture and tokenizer of Llama 2, TinyLlama leverages various advances contributed by the open-source community (e.g., FlashAttention), achieving better computational efficiency. Despite its relatively small size, TinyLlama demonstrates remarkable performance in a series of downstream tasks. It significantly outperforms existing open-source language models with comparable sizes. Our model checkpoints and code are publicly available on GitHub at //github.com/jzhang38/TinyLlama.
We introduce Physically Enhanced Gaussian Splatting Simulation System (PEGASUS) for 6DOF object pose dataset generation, a versatile dataset generator based on 3D Gaussian Splatting. Environment and object representations can be easily obtained using commodity cameras to reconstruct with Gaussian Splatting. PEGASUS allows the composition of new scenes by merging the respective underlying Gaussian Splatting point cloud of an environment with one or multiple objects. Leveraging a physics engine enables the simulation of natural object placement within a scene through interaction between meshes extracted for the objects and the environment. Consequently, an extensive amount of new scenes - static or dynamic - can be created by combining different environments and objects. By rendering scenes from various perspectives, diverse data points such as RGB images, depth maps, semantic masks, and 6DoF object poses can be extracted. Our study demonstrates that training on data generated by PEGASUS enables pose estimation networks to successfully transfer from synthetic data to real-world data. Moreover, we introduce the Ramen dataset, comprising 30 Japanese cup noodle items. This dataset includes spherical scans that captures images from both object hemisphere and the Gaussian Splatting reconstruction, making them compatible with PEGASUS.
This work pioneers evaluating emergent planning capabilities based on situational awareness in large language models. We contribute (i) novel benchmarks and metrics for standardized assessment; (ii) a unique dataset to spur progress; and (iii) demonstrations that prompting and multi-agent schemes significantly enhance planning performance in context-sensitive planning tasks. Positioning this within a situated agent and automated planning research, we highlight inherent reliability challenges--efficiently mapping world states to actions without environmental guidance remains open despite simulated domain advances. Although out-of-scope, limitations around validation methodology and data availability indicate exciting directions, including fine-tuning on expanded planning corpora and optimizations for triggering fast latent planning. By conclusively demonstrating current methods' promise and limitations via rigorous comparison, we catalyze investigating reliable goal-directed reasoning for situated agents.
Recent advances in contrastive language-image pretraining (CLIP) have demonstrated strong capabilities in zero-shot classification by aligning visual representations with target text embeddings in an image level. However, in dense prediction tasks, CLIP often struggles to localize visual features within an image and fails to give accurate pixel-level predictions, which prevents it from functioning as a generalized visual foundation model. In this work, we aim to enhance CLIP's potential for semantic segmentation with minimal modifications to its pretrained models. By rethinking self-attention, we surprisingly find that CLIP can adapt to dense prediction tasks by simply introducing a novel Correlative Self-Attention (CSA) mechanism. Specifically, we replace the traditional self-attention block of CLIP vision encoder's last layer by our CSA module and reuse its pretrained projection matrices of query, key, and value, leading to a training-free adaptation approach for CLIP's zero-shot semantic segmentation. Extensive experiments show the advantage of CSA: we obtain a 38.2% average zero-shot mIoU across eight semantic segmentation benchmarks highlighted in this paper, significantly outperforming the existing SoTA's 33.9% and the vanilla CLIP's 14.1%.
Deep learning on graphs has attracted significant interests recently. However, most of the works have focused on (semi-) supervised learning, resulting in shortcomings including heavy label reliance, poor generalization, and weak robustness. To address these issues, self-supervised learning (SSL), which extracts informative knowledge through well-designed pretext tasks without relying on manual labels, has become a promising and trending learning paradigm for graph data. Different from SSL on other domains like computer vision and natural language processing, SSL on graphs has an exclusive background, design ideas, and taxonomies. Under the umbrella of graph self-supervised learning, we present a timely and comprehensive review of the existing approaches which employ SSL techniques for graph data. We construct a unified framework that mathematically formalizes the paradigm of graph SSL. According to the objectives of pretext tasks, we divide these approaches into four categories: generation-based, auxiliary property-based, contrast-based, and hybrid approaches. We further conclude the applications of graph SSL across various research fields and summarize the commonly used datasets, evaluation benchmark, performance comparison and open-source codes of graph SSL. Finally, we discuss the remaining challenges and potential future directions in this research field.
We present CoDEx, a set of knowledge graph completion datasets extracted from Wikidata and Wikipedia that improve upon existing knowledge graph completion benchmarks in scope and level of difficulty. In terms of scope, CoDEx comprises three knowledge graphs varying in size and structure, multilingual descriptions of entities and relations, and tens of thousands of hard negative triples that are plausible but verified to be false. To characterize CoDEx, we contribute thorough empirical analyses and benchmarking experiments. First, we analyze each CoDEx dataset in terms of logical relation patterns. Next, we report baseline link prediction and triple classification results on CoDEx for five extensively tuned embedding models. Finally, we differentiate CoDEx from the popular FB15K-237 knowledge graph completion dataset by showing that CoDEx covers more diverse and interpretable content, and is a more difficult link prediction benchmark. Data, code, and pretrained models are available at //bit.ly/2EPbrJs.
We propose a knowledge-enhanced approach, ERNIE-ViL, to learn joint representations of vision and language. ERNIE-ViL tries to construct the detailed semantic connections (objects, attributes of objects and relationships between objects in visual scenes) across vision and language, which are essential to vision-language cross-modal tasks. Incorporating knowledge from scene graphs, ERNIE-ViL constructs Scene Graph Prediction tasks, i.e., Object Prediction, Attribute Prediction and Relationship Prediction in the pre-training phase. More specifically, these prediction tasks are implemented by predicting nodes of different types in the scene graph parsed from the sentence. Thus, ERNIE-ViL can model the joint representation characterizing the alignments of the detailed semantics across vision and language. Pre-trained on two large image-text alignment datasets (Conceptual Captions and SBU), ERNIE-ViL learns better and more robust joint representations. It achieves state-of-the-art performance on 5 vision-language downstream tasks after fine-tuning ERNIE-ViL. Furthermore, it ranked the 1st place on the VCR leader-board with an absolute improvement of 3.7%.
We propose to pre-train a unified language model for both autoencoding and partially autoregressive language modeling tasks using a novel training procedure, referred to as a pseudo-masked language model (PMLM). Given an input text with masked tokens, we rely on conventional masks to learn inter-relations between corrupted tokens and context via autoencoding, and pseudo masks to learn intra-relations between masked spans via partially autoregressive modeling. With well-designed position embeddings and self-attention masks, the context encodings are reused to avoid redundant computation. Moreover, conventional masks used for autoencoding provide global masking information, so that all the position embeddings are accessible in partially autoregressive language modeling. In addition, the two tasks pre-train a unified language model as a bidirectional encoder and a sequence-to-sequence decoder, respectively. Our experiments show that the unified language models pre-trained using PMLM achieve new state-of-the-art results on a wide range of natural language understanding and generation tasks across several widely used benchmarks.
Knowledge graphs (KGs) serve as useful resources for various natural language processing applications. Previous KG completion approaches require a large number of training instances (i.e., head-tail entity pairs) for every relation. The real case is that for most of the relations, very few entity pairs are available. Existing work of one-shot learning limits method generalizability for few-shot scenarios and does not fully use the supervisory information; however, few-shot KG completion has not been well studied yet. In this work, we propose a novel few-shot relation learning model (FSRL) that aims at discovering facts of new relations with few-shot references. FSRL can effectively capture knowledge from heterogeneous graph structure, aggregate representations of few-shot references, and match similar entity pairs of reference set for every relation. Extensive experiments on two public datasets demonstrate that FSRL outperforms the state-of-the-art.
We propose a novel single shot object detection network named Detection with Enriched Semantics (DES). Our motivation is to enrich the semantics of object detection features within a typical deep detector, by a semantic segmentation branch and a global activation module. The segmentation branch is supervised by weak segmentation ground-truth, i.e., no extra annotation is required. In conjunction with that, we employ a global activation module which learns relationship between channels and object classes in a self-supervised manner. Comprehensive experimental results on both PASCAL VOC and MS COCO detection datasets demonstrate the effectiveness of the proposed method. In particular, with a VGG16 based DES, we achieve an mAP of 81.7 on VOC2007 test and an mAP of 32.8 on COCO test-dev with an inference speed of 31.5 milliseconds per image on a Titan Xp GPU. With a lower resolution version, we achieve an mAP of 79.7 on VOC2007 with an inference speed of 13.0 milliseconds per image.