亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

This study proposes a novel image contrast enhancement method based on image projection onto the squared eigenfunctions of the two dimensional Schr\"odinger operator. This projection depends on a design parameter \texorpdfstring{\(\gamma\)}{gamma} which is proposed to control the pixel intensity during image reconstruction. The performance of the proposed method is investigated through its application to color images. The selection of \texorpdfstring{\(\gamma\)}{gamma} values is performed using k-means, which helps preserve the image spatial adjacency information. Furthermore, multi-objective optimization using the Non dominated Sorting Genetic Algorithm II (NSAG2) algorithm is proposed to select the optimal values of \texorpdfstring{\(\gamma\)}{gamma} and the semi-classical parameter h from the 2DSCSA. The results demonstrate the effectiveness of the proposed method for enhancing image contrast while preserving the inherent characteristics of the original image, producing the desired enhancement with almost no artifacts.

相關內容

Recent years have witnessed a rapid growth of recommender systems, providing suggestions in numerous applications with potentially high social impact, such as health or justice. Meanwhile, in Europe, the upcoming AI Act mentions \emph{transparency} as a requirement for critical AI systems in order to ``mitigate the risks to fundamental rights''. Post-hoc explanations seamlessly align with this goal and extensive literature on the subject produced several forms of such objects, graphs being one of them. Early studies in visualization demonstrated the graphs' ability to improve user understanding, positioning them as potentially ideal explanations. However, it remains unclear how graph-based explanations compare to other explanation designs. In this work, we aim to determine the effectiveness of graph-based explanations in improving users' perception of AI-based recommendations using a mixed-methods approach. We first conduct a qualitative study to collect users' requirements for graph explanations. We then run a larger quantitative study in which we evaluate the influence of various explanation designs, including enhanced graph-based ones, on aspects such as understanding, usability and curiosity toward the AI system. We find that users perceive graph-based explanations as more usable than designs involving feature importance. However, we also reveal that textual explanations lead to higher objective understanding than graph-based designs. Most importantly, we highlight the strong contrast between participants' expressed preferences for graph design and their actual ratings using it, which are lower compared to textual design. These findings imply that meeting stakeholders' expressed preferences might not alone guarantee ``good'' explanations. Therefore, crafting hybrid designs successfully balancing social expectations with downstream performance emerges as a significant challenge.

Many interesting physical problems described by systems of hyperbolic conservation laws are stiff, and thus impose a very small time-step because of the restrictive CFL stability condition. In this case, one can exploit the superior stability properties of implicit time integration which allows to choose the time-step only from accuracy requirements, and thus avoid the use of small time-steps. We discuss an efficient framework to devise high order implicit schemes for stiff hyperbolic systems without tailoring it to a specific problem. The nonlinearity of high order schemes, due to space- and time-limiting procedures which control nonphysical oscillations, makes the implicit time integration difficult, e.g.~because the discrete system is nonlinear also on linear problems. This nonlinearity of the scheme is circumvented as proposed in (Puppo et al., Comm.~Appl.~Math.~\& Comput., 2023) for scalar conservation laws, where a first order implicit predictor is computed to freeze the nonlinear coefficients of the essentially non-oscillatory space reconstruction, and also to assist limiting in time. In addition, we propose a novel conservative flux-centered a-posteriori time-limiting procedure using numerical entropy indicators to detect troubled cells. The numerical tests involve classical and artificially devised stiff problems using the Euler's system of gas-dynamics.

In this paper, preconditioning the saddle point problem arising from the elliptic boundary optimal control problem with mixed boundary conditions is considered. A block triangular reconditioning method is proposed based on permutations of the saddle point problem and approximations of the corresponding Schur complement. The spectral properties of the preconditioned matrix is analyzed. Numerical experiments are conducted to demonstrate the effectiveness of the proposed preconditioning method.

This paper redefines the foundations of asymmetric cryptography's homomorphic cryptosystems through the application of the Yoneda Lemma. It explicitly illustrates that widely adopted systems, including ElGamal, RSA, Benaloh, Regev's LWE, and NTRUEncrypt, directly derive from the principles of the Yoneda Lemma. This synthesis gives rise to a holistic homomorphic encryption framework named the Yoneda Encryption Scheme. Within this scheme, encryption is elucidated through the bijective maps of the Yoneda Lemma Isomorphism, and decryption seamlessly follows from the naturality of these maps. This unification suggests a conjecture for a unified model theory framework, providing a basis for reasoning about both homomorphic and fully homomorphic encryption (FHE) schemes. As a practical demonstration, the paper introduces an FHE scheme capable of processing arbitrary finite sequences of encrypted multiplications and additions without the need for additional tweaking techniques, such as squashing or bootstrapping. This not only underscores the practical implications of the proposed theoretical advancements but also introduces new possibilities for leveraging model theory and forcing techniques in cryptography to facilitate the design of FHE schemes.

This paper studies a linear and additively separable model for multidimensional panel data of three or more dimensions with unobserved interactive fixed effects. Two approaches are considered to account for these unobserved interactive fixed-effects when estimating coefficients on the observed covariates. First, the model is embedded within the standard two dimensional panel framework and restrictions are formed under which the factor structure methods in Bai (2009) lead to consistent estimation of model parameters, but at slow rates of convergence. The second approach develops a kernel weighted fixed-effects method that is more robust to the multidimensional nature of the problem and can achieve the parametric rate of consistency under certain conditions. Theoretical results and simulations show some benefits to standard two-dimensional panel methods when the structure of the interactive fixed-effect term is known, but also highlight how the kernel weighted method performs well without knowledge of this structure. The methods are implemented to estimate the demand elasticity for beer.

This study proposes a unified theory and statistical learning approach for traffic conflict detection, addressing the long-existing call for a consistent and comprehensive methodology to evaluate the collision risk emerged in road user interactions. The proposed theory assumes a context-dependent probabilistic collision risk and frames conflict detection as estimating the risk by statistical learning from observed proximities and contextual variables. Three primary tasks are integrated: representing interaction context from selected observables, inferring proximity distributions in different contexts, and applying extreme value theory to relate conflict intensity with conflict probability. As a result, this methodology is adaptable to various road users and interaction scenarios, enhancing its applicability without the need for pre-labelled conflict data. Demonstration experiments are executed using real-world trajectory data, with the unified metric trained on lane-changing interactions on German highways and applied to near-crash events from the 100-Car Naturalistic Driving Study in the U.S. The experiments demonstrate the methodology's ability to provide effective collision warnings, generalise across different datasets and traffic environments, cover a broad range of conflicts, and deliver a long-tailed distribution of conflict intensity. This study contributes to traffic safety by offering a consistent and explainable methodology for conflict detection applicable across various scenarios. Its societal implications include enhanced safety evaluations of traffic infrastructures, more effective collision warning systems for autonomous and driving assistance systems, and a deeper understanding of road user behaviour in different traffic conditions, contributing to a potential reduction in accident rates and improving overall traffic safety.

We theoretically explore boundary conditions for lattice Boltzmann methods, focusing on a toy two-velocities scheme. By mapping lattice Boltzmann schemes to Finite Difference schemes, we facilitate rigorous consistency and stability analyses. We develop kinetic boundary conditions for inflows and outflows, highlighting the trade-off between accuracy and stability, which we successfully overcome. Consistency analysis relies on modified equations, whereas stability is assessed using GKS (Gustafsson, Kreiss, and Sundstr{\"o}m) theory and -- when this approach fails on coarse meshes -- spectral and pseudo-spectral analyses of the scheme's matrix that explain effects germane to low resolutions.

Motivation: In systems biology, modelling strategies aim to decode how molecular components interact to generate dynamical behaviour. Boolean modelling is more and more used, but the description of the dynamics from two-levels components may be too limited to capture certain dynamical properties. %However, in Boolean models, the description of the dynamics may be too limited to capture certain dynamical properties. Multivalued logical models can overcome this limitation by allowing more than two levels for each component. However, multivaluing a Boolean model is challenging. Results: We present MRBM, a method for efficiently identifying the components of a Boolean model to be multivalued in order to capture specific fixed-point reachabilities in the asynchronous dynamics. To this goal, we defined a new updating scheme locating reachability properties in the most permissive dynamics. MRBM is supported by mathematical demonstrations and illustrated on a toy model and on two models of stem cell differentiation.

This article presents a concise proof of the famous Benford's law when the distribution has a Riemann integrable probability density function and provides a criterion to judge whether a distribution obeys the law. The proof is intuitive and elegant, accessible to anyone with basic knowledge of calculus, revealing that the law originates from the basic property of the human number system. The criterion can bring great convenience to the field of fraud detection.

The rapid pace of development in quantum computing technology has sparked a proliferation of benchmarks for assessing the performance of quantum computing hardware and software. Good benchmarks empower scientists, engineers, programmers, and users to understand a computing system's power, but bad benchmarks can misdirect research and inhibit progress. In this Perspective, we survey the science of quantum computer benchmarking. We discuss the role of benchmarks and benchmarking, and how good benchmarks can drive and measure progress towards the long-term goal of useful quantum computations, i.e., "quantum utility". We explain how different kinds of benchmark quantify the performance of different parts of a quantum computer, we survey existing benchmarks, critically discuss recent trends in benchmarking, and highlight important open research questions in this field.

北京阿比特科技有限公司