We present the results of training a large trajectory model using real-world user check-in data. Our approach follows a pre-train and fine-tune paradigm, where a base model is pre-trained via masked trajectory modeling and then adapted through fine-tuning for various downstream tasks. To address challenges posed by noisy data and large spatial vocabularies, we propose a novel spatial tokenization block. Our empirical analysis utilizes a comprehensive dataset of over 2 billion check-ins generated by more than 6 million users. Through fine-tuning on 3 downstream tasks we demonstrate that our base model has effectively learned valuable underlying patterns in raw data, enabling its application in meaningful trajectory intelligence tasks. Despite some limitations, we believe this work represents an important step forward in the realization of a foundation model for trajectory intelligence.
We investigate the role of the initial screening order (ISO) in candidate screening processes, such as hiring and academic admissions. ISO refers to the order in which the screener sorts the candidate pool before the evaluation. It has been largely overlooked in the literature, despite its potential impact on the optimality and fairness of the chosen set, especially under a human screener. We define two problem formulations: best-$k$, where the screener chooses the $k$ best candidates, and good-$k$, where the screener chooses the first $k$ good-enough candidates. To study the impact of ISO, we introduce a human-like screener and compare to its algorithmic counterpart. The human-like screener is conceived to be inconsistent over time due to fatigue. Our analysis shows that the ISO under a human-like screener hinders individual fairness despite meeting group level fairness. This is due to the position bias, where a candidate's evaluation is affected by its position within ISO. We report extensive simulated experiments exploring the parameters of the problem formulations both for algorithmic and human-like screeners. This work is motivated by a real world candidate screening problem studied in collaboration with a large European company.
Learning with noisy labels aims to ensure model generalization given a label-corrupted training set. The sample selection strategy achieves promising performance by selecting a label-reliable subset for model training. In this paper, we empirically reveal that existing sample selection methods suffer from both data and training bias that are represented as imbalanced selected sets and accumulation errors in practice, respectively. However, only the training bias was handled in previous studies. To address this limitation, we propose a noIse-Tolerant Expert Model (ITEM) for debiased learning in sample selection. Specifically, to mitigate the training bias, we design a robust network architecture that integrates with multiple experts. Compared with the prevailing double-branch network, our network exhibits better performance of selection and prediction by ensembling these experts while training with fewer parameters. Meanwhile, to mitigate the data bias, we propose a mixed sampling strategy based on two weight-based data samplers. By training on the mixture of two class-discriminative mini-batches, the model mitigates the effect of the imbalanced training set while avoiding sparse representations that are easily caused by sampling strategies. Extensive experiments and analyses demonstrate the effectiveness of ITEM. Our code is available at this url \href{//github.com/1998v7/ITEM}{ITEM}.
Improving the alignment of language models with human preferences remains an active research challenge. Previous approaches have primarily utilized Reinforcement Learning from Human Feedback (RLHF) via online RL methods such as Proximal Policy Optimization (PPO). Recently, offline methods such as Sequence Likelihood Calibration (SLiC) and Direct Preference Optimization (DPO) have emerged as attractive alternatives, offering improvements in stability and scalability while maintaining competitive performance. SLiC refines its loss function using sequence pairs sampled from a supervised fine-tuned (SFT) policy, while DPO directly optimizes language models based on preference data, foregoing the need for a separate reward model. However, the maximum likelihood estimator (MLE) of the target optimal policy requires labeled preference pairs sampled from that policy. DPO's lack of a reward model constrains its ability to sample preference pairs from the optimal policy, and SLiC is restricted to sampling preference pairs only from the SFT policy. To address these limitations, we introduce a novel approach called Statistical Rejection Sampling Optimization (RSO) that aims to source preference data from the target optimal policy using rejection sampling, enabling a more accurate estimation of the optimal policy. We also propose a unified framework that enhances the loss functions used in both SLiC and DPO from a preference modeling standpoint. Through extensive experiments across three diverse tasks, we demonstrate that RSO consistently outperforms both SLiC and DPO on evaluations from both Large Language Model (LLM) and human raters.
Recommender systems are often susceptible to well-crafted fake profiles, leading to biased recommendations. Among existing defense methods, data-processing-based methods inevitably exclude normal samples, while model-based methods struggle to enjoy both generalization and robustness. To this end, we suggest integrating data processing and the robust model to propose a general framework, Triple Cooperative Defense (TCD), which employs three cooperative models that mutually enhance data and thereby improve recommendation robustness. Furthermore, Considering that existing attacks struggle to balance bi-level optimization and efficiency, we revisit poisoning attacks in recommender systems and introduce an efficient attack strategy, Co-training Attack (Co-Attack), which cooperatively optimizes the attack optimization and model training, considering the bi-level setting while maintaining attack efficiency. Moreover, we reveal a potential reason for the insufficient threat of existing attacks is their default assumption of optimizing attacks in undefended scenarios. This overly optimistic setting limits the potential of attacks. Consequently, we put forth a Game-based Co-training Attack (GCoAttack), which frames the proposed CoAttack and TCD as a game-theoretic process, thoroughly exploring CoAttack's attack potential in the cooperative training of attack and defense. Extensive experiments on three real datasets demonstrate TCD's superiority in enhancing model robustness. Additionally, we verify that the two proposed attack strategies significantly outperform existing attacks, with game-based GCoAttack posing a greater poisoning threat than CoAttack.
In decision-making problems with limited training data, policy functions approximated using deep neural networks often exhibit suboptimal performance. An alternative approach involves learning a world model from the limited data and determining actions through online search. However, the performance is adversely affected by compounding errors arising from inaccuracies in the learnt world model. While methods like TreeQN have attempted to address these inaccuracies by incorporating algorithmic structural biases into their architectures, the biases they introduce are often weak and insufficient for complex decision-making tasks. In this work, we introduce Differentiable Tree Search (DTS), a novel neural network architecture that significantly strengthens the inductive bias by embedding the algorithmic structure of a best-first online search algorithm. DTS employs a learnt world model to conduct a fully differentiable online search in latent state space. The world model is jointly optimised with the search algorithm, enabling the learning of a robust world model and mitigating the effect of model inaccuracies. We address potential Q-function discontinuities arising from naive incorporation of best-first search by adopting a stochastic tree expansion policy, formulating search tree expansion as a decision-making task, and introducing an effective variance reduction technique for the gradient computation. We evaluate DTS in an offline-RL setting with a limited training data scenario on Procgen games and grid navigation task, and demonstrate that DTS outperforms popular model-free and model-based baselines.
Transformer-based models are becoming deeper and larger recently. For better scalability, an underlying training solution in industry is to split billions of parameters (tensors) into many tasks and then run them across homogeneous accelerators (e.g., GPUs). However, such dedicated compute cluster is prohibitively expensive in academia and moderate companies. An economic replacement is to aggregate existing heterogeneous devices and share resources among multi-tenants. Nevertheless, static hardware configurations and dynamic resource contention definitely cause straggling tasks, which heavily slows down the overall training efficiency. Existing works feature contributions mainly tailored for traditional data parallelism. They cannot work well for the new tensor parallelism due to strict communication and correctness constraints. In this paper we first present ZERO-resizing, a novel dynamic workload balancing technique without any data migration. We tune workloads in real-time by temporarily resizing matrices involved in core tensor-related computations. We particularly design data imputation and priority selection policies to respectively satisfy consistency constraint required by normal training and reduce the accuracy loss. We also give a lightweight data migration technique without loss of accuracy, to cope with heavy heterogeneity. Our final SEMI-migration solution is built on top of these two techniques and can adaptively distinguish their respective balancing missions, to achieve an overall success in efficiency and accuracy. Extensive experiments on the representative Colossal-AI platform validate the effectiveness of our proposals.
This paper presents a new approach for assembling graph neural networks based on framelet transforms. The latter provides a multi-scale representation for graph-structured data. With the framelet system, we can decompose the graph feature into low-pass and high-pass frequencies as extracted features for network training, which then defines a framelet-based graph convolution. The framelet decomposition naturally induces a graph pooling strategy by aggregating the graph feature into low-pass and high-pass spectra, which considers both the feature values and geometry of the graph data and conserves the total information. The graph neural networks with the proposed framelet convolution and pooling achieve state-of-the-art performance in many types of node and graph prediction tasks. Moreover, we propose shrinkage as a new activation for the framelet convolution, which thresholds the high-frequency information at different scales. Compared to ReLU, shrinkage in framelet convolution improves the graph neural network model in terms of denoising and signal compression: noises in both node and structure can be significantly reduced by accurately cutting off the high-pass coefficients from framelet decomposition, and the signal can be compressed to less than half its original size with the prediction performance well preserved.
Knowledge graph (KG) embedding encodes the entities and relations from a KG into low-dimensional vector spaces to support various applications such as KG completion, question answering, and recommender systems. In real world, knowledge graphs (KGs) are dynamic and evolve over time with addition or deletion of triples. However, most existing models focus on embedding static KGs while neglecting dynamics. To adapt to the changes in a KG, these models need to be re-trained on the whole KG with a high time cost. In this paper, to tackle the aforementioned problem, we propose a new context-aware Dynamic Knowledge Graph Embedding (DKGE) method which supports the embedding learning in an online fashion. DKGE introduces two different representations (i.e., knowledge embedding and contextual element embedding) for each entity and each relation, in the joint modeling of entities and relations as well as their contexts, by employing two attentive graph convolutional networks, a gate strategy, and translation operations. This effectively helps limit the impacts of a KG update in certain regions, not in the entire graph, so that DKGE can rapidly acquire the updated KG embedding by a proposed online learning algorithm. Furthermore, DKGE can also learn KG embedding from scratch. Experiments on the tasks of link prediction and question answering in a dynamic environment demonstrate the effectiveness and efficiency of DKGE.
We investigate a lattice-structured LSTM model for Chinese NER, which encodes a sequence of input characters as well as all potential words that match a lexicon. Compared with character-based methods, our model explicitly leverages word and word sequence information. Compared with word-based methods, lattice LSTM does not suffer from segmentation errors. Gated recurrent cells allow our model to choose the most relevant characters and words from a sentence for better NER results. Experiments on various datasets show that lattice LSTM outperforms both word-based and character-based LSTM baselines, achieving the best results.
Link prediction for knowledge graphs is the task of predicting missing relationships between entities. Previous work on link prediction has focused on shallow, fast models which can scale to large knowledge graphs. However, these models learn less expressive features than deep, multi-layer models -- which potentially limits performance. In this work, we introduce ConvE, a multi-layer convolutional network model for link prediction, and report state-of-the-art results for several established datasets. We also show that the model is highly parameter efficient, yielding the same performance as DistMult and R-GCN with 8x and 17x fewer parameters. Analysis of our model suggests that it is particularly effective at modelling nodes with high indegree -- which are common in highly-connected, complex knowledge graphs such as Freebase and YAGO3. In addition, it has been noted that the WN18 and FB15k datasets suffer from test set leakage, due to inverse relations from the training set being present in the test set -- however, the extent of this issue has so far not been quantified. We find this problem to be severe: a simple rule-based model can achieve state-of-the-art results on both WN18 and FB15k. To ensure that models are evaluated on datasets where simply exploiting inverse relations cannot yield competitive results, we investigate and validate several commonly used datasets -- deriving robust variants where necessary. We then perform experiments on these robust datasets for our own and several previously proposed models, and find that ConvE achieves state-of-the-art Mean Reciprocal Rank across all datasets.