In this paper, we propose a cooperative long-term task execution (LTTE) algorithm for protecting a moving target into the interior of an ordering-flexible convex hull by a team of robots resiliently in the changing environments. Particularly, by designing target-approaching and sensing-neighbor collision-free subtasks, and incorporating these subtasks into the constraints rather than the traditional cost function in an online constraint-based optimization framework, the proposed LTTE can systematically guarantee long-term target convoying under changing environments in the n-dimensional Euclidean space. Then, the introduction of slack variables allow for the constraint violation of different subtasks; i.e., the attraction from target-approaching constraints and the repulsion from time-varying collision-avoidance constraints, which results in the desired formation with arbitrary spatial ordering sequences. Rigorous analysis is provided to guarantee asymptotical convergence with challenging nonlinear couplings induced by time-varying collision-free constraints. Finally, 2D experiments using three autonomous mobile robots (AMRs) are conducted to validate the effectiveness of the proposed algorithm, and 3D simulations tackling changing environmental elements, such as different initial positions, some robots suddenly breakdown and static obstacles are presented to demonstrate the multi-dimensional adaptability, robustness and the ability of obstacle avoidance of the proposed method.
Stacked intelligent metasurfaces (SIM) is a revolutionary technology, which can outperform its single-layer counterparts by performing advanced signal processing relying on wave propagation. In this work, we exploit SIM to enable transmit precoding and receiver combining in holographic multiple-input multiple-output (HMIMO) communications, and we study the achievable rate by formulating a joint optimization problem of the SIM phase shifts at both sides of the transceiver and the covariance matrix of the transmitted signal. Notably, we propose its solution by means of an iterative optimization algorithm that relies on the projected gradient method, and accounts for all optimization parameters simultaneously. We also obtain the step size guaranteeing the convergence of the proposed algorithm. Simulation results provide fundamental insights such the performance improvements compared to the single-RIS counterpart and conventional MIMO system. Remarkably, the proposed algorithm results in the same achievable rate as the alternating optimization (AO) benchmark but with a less number of iterations.
Multimodal learning with incomplete input data (missing modality) is practical and challenging. In this work, we conduct an in-depth analysis of this challenge and find that modality dominance has a significant negative impact on the model training, greatly degrading the missing modality performance. Motivated by Grad-CAM, we introduce a novel indicator, gradients, to monitor and reduce modality dominance which widely exists in the missing-modality scenario. In aid of this indicator, we present a novel Gradient-guided Modality Decoupling (GMD) method to decouple the dependency on dominating modalities. Specifically, GMD removes the conflicted gradient components from different modalities to achieve this decoupling, significantly improving the performance. In addition, to flexibly handle modal-incomplete data, we design a parameter-efficient Dynamic Sharing (DS) framework which can adaptively switch on/off the network parameters based on whether one modality is available. We conduct extensive experiments on three popular multimodal benchmarks, including BraTS 2018 for medical segmentation, CMU-MOSI, and CMU-MOSEI for sentiment analysis. The results show that our method can significantly outperform the competitors, showing the effectiveness of the proposed solutions. Our code is released here: //github.com/HaoWang420/Gradient-guided-Modality-Decoupling.
Recently, various parameter-efficient fine-tuning (PEFT) strategies for application to language models have been proposed and successfully implemented. However, this raises the question of whether PEFT, which only updates a limited set of model parameters, constitutes security vulnerabilities when confronted with weight-poisoning backdoor attacks. In this study, we show that PEFT is more susceptible to weight-poisoning backdoor attacks compared to the full-parameter fine-tuning method, with pre-defined triggers remaining exploitable and pre-defined targets maintaining high confidence, even after fine-tuning. Motivated by this insight, we developed a Poisoned Sample Identification Module (PSIM) leveraging PEFT, which identifies poisoned samples through confidence, providing robust defense against weight-poisoning backdoor attacks. Specifically, we leverage PEFT to train the PSIM with randomly reset sample labels. During the inference process, extreme confidence serves as an indicator for poisoned samples, while others are clean. We conduct experiments on text classification tasks, five fine-tuning strategies, and three weight-poisoning backdoor attack methods. Experiments show near 100% success rates for weight-poisoning backdoor attacks when utilizing PEFT. Furthermore, our defensive approach exhibits overall competitive performance in mitigating weight-poisoning backdoor attacks.
In this paper, we develop a general framework for constructing higher-order, unconditionally energy-stable exponential time differencing Runge-Kutta methods applicable to a range of gradient flows. Specifically, we identify conditions sufficient for ETDRK schemes to maintain the original energy dissipation. Our analysis reveals that commonly used third-order and fourth-order ETDRK schemes fail to meet these conditions. To address this, we introduce new third-order ETDRK schemes, designed with appropriate stabilization, which satisfy these conditions and thus guarantee the unconditional energy decaying property. We conduct extensive numerical experiments with these new schemes to verify their accuracy, stability, behavior under large time steps, long-term evolution, and adaptive time stepping strategy across various gradient flows. This study is the first to examine the unconditional energy stability of high-order ETDRK methods, and we are optimistic that our framework will enable the development of ETDRK schemes beyond the third order that are unconditionally energy stable.
Self-supervised learning excels in learning representations from large amounts of unlabeled data, demonstrating success across multiple data modalities. Yet, extending self-supervised learning to new modalities is non-trivial because the specifics of existing methods are tailored to each domain, such as domain-specific augmentations which reflect the invariances in the target task. While masked modeling is promising as a domain-agnostic framework for self-supervised learning because it does not rely on input augmentations, its mask sampling procedure remains domain-specific. We present Self-guided Masked Autoencoders (SMA), a fully domain-agnostic masked modeling method. SMA trains an attention based model using a masked modeling objective, by learning masks to sample without any domain-specific assumptions. We evaluate SMA on three self-supervised learning benchmarks in protein biology, chemical property prediction, and particle physics. We find SMA is capable of learning representations without domain-specific knowledge and achieves state-of-the-art performance on these three benchmarks.
In this research, we study the problem that a collector acquires items from the owner based on the item qualities the owner declares and an independent appraiser's assessments. The owner is interested in maximizing the probability that the collector acquires the items and is the only one who knows the items' factual quality. The appraiser performs her duties with impartiality, but her assessment may be subject to random noises, so it may not accurately reflect the factual quality of the items. The main challenge lies in devising mechanisms that prompt the owner to reveal accurate information, thereby optimizing the collector's expected reward. We consider the menu size of mechanisms as a measure of their practicability and study its impact on the attainable expected reward. For the single-item setting, we design optimal mechanisms with a monotone increasing menu size. Although the reward gap between the simplest and optimal mechanisms is bounded, we show that simple mechanisms with a small menu size cannot ensure any positive fraction of the optimal reward of mechanisms with a larger menu size. For the multi-item setting, we show that an ordinal mechanism that only takes the owner's ordering of the items as input is not incentive-compatible. We then propose a set of Union mechanisms that combine single-item mechanisms. Moreover, we run experiments to examine these mechanisms' robustness against the independent appraiser's assessment accuracy and the items' acquiring rate.
Non-IID data present a tough challenge for federated learning. In this paper, we explore a novel idea of facilitating pairwise collaborations between clients with similar data. We propose FedAMP, a new method employing federated attentive message passing to facilitate similar clients to collaborate more. We establish the convergence of FedAMP for both convex and non-convex models, and propose a heuristic method to further improve the performance of FedAMP when clients adopt deep neural networks as personalized models. Our extensive experiments on benchmark data sets demonstrate the superior performance of the proposed methods.
In this paper, we proposed to apply meta learning approach for low-resource automatic speech recognition (ASR). We formulated ASR for different languages as different tasks, and meta-learned the initialization parameters from many pretraining languages to achieve fast adaptation on unseen target language, via recently proposed model-agnostic meta learning algorithm (MAML). We evaluated the proposed approach using six languages as pretraining tasks and four languages as target tasks. Preliminary results showed that the proposed method, MetaASR, significantly outperforms the state-of-the-art multitask pretraining approach on all target languages with different combinations of pretraining languages. In addition, since MAML's model-agnostic property, this paper also opens new research direction of applying meta learning to more speech-related applications.
Multi-relation Question Answering is a challenging task, due to the requirement of elaborated analysis on questions and reasoning over multiple fact triples in knowledge base. In this paper, we present a novel model called Interpretable Reasoning Network that employs an interpretable, hop-by-hop reasoning process for question answering. The model dynamically decides which part of an input question should be analyzed at each hop; predicts a relation that corresponds to the current parsed results; utilizes the predicted relation to update the question representation and the state of the reasoning process; and then drives the next-hop reasoning. Experiments show that our model yields state-of-the-art results on two datasets. More interestingly, the model can offer traceable and observable intermediate predictions for reasoning analysis and failure diagnosis.
In this paper, we propose the joint learning attention and recurrent neural network (RNN) models for multi-label classification. While approaches based on the use of either model exist (e.g., for the task of image captioning), training such existing network architectures typically require pre-defined label sequences. For multi-label classification, it would be desirable to have a robust inference process, so that the prediction error would not propagate and thus affect the performance. Our proposed model uniquely integrates attention and Long Short Term Memory (LSTM) models, which not only addresses the above problem but also allows one to identify visual objects of interests with varying sizes without the prior knowledge of particular label ordering. More importantly, label co-occurrence information can be jointly exploited by our LSTM model. Finally, by advancing the technique of beam search, prediction of multiple labels can be efficiently achieved by our proposed network model.